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I. INTRODUCTION 

S t r e s s  waves i n  composite materials a re  of i n t e r e s t  t o  t h e  engineer 

both f o r  t h e i r  cons t ruc t ive -app l i ca t ion  and f o r  t he  po ten t i a l  damage t h a t  

can occur when s h o r t  durat ion stress pulses  propagate i n  a s t r u c t u r e .  

S t r e s s  waves have a cons t ruc t ive  use as  a d iagnos t ic  t o o l  t o  measure 

e l a s t i c  p rope r t i e s ,  search f o r  flows and t ransmit  information. Such appl i -  

ca t ion  usua l ly  involves waves i n  the  form of pulses  o r  u l t r a s o n i c  s inu-  

so ida l  pu l se s .  Seismologists have long been i n t e r e s t e d  i n  t h i s  appl ica t ion  

of stress waves, p a r t i c u l a r l y  the  study of waves i n  layered media (see e .g .  

Ewing e t  a l . ,  1957; Brekhovskikh, 1960). Early s tud ie s  of  laminated media 

were aimed i n  fact  a t  geophysical appl ica t ions  (e .g .  Anderson, 1961). 

S t ruc tu ra l  engineers however usua l ly  r e l y  on composite mater ia l s  t o  

sus t a in  forces  o r  loads.  When these  forces  are a r e s u l t  of shock o r  impact 

on the  s t r u c t u r e ,  t he  forces  w i l l  be t ransmit ted through t h e  s t r u c t u r e  i n  

t h e  form of stress waves. 

s t a t i c  o r  q u a s i - s t a t i c  loads (v ibra t ions)  can usua l ly  be pred ic ted  by 

s t r u c t u r a l  engineers ,  rou t ine  methods f o r  pred ic t ing  the path 

While the  pred ic t ion  of stress d i s t r i b u t i o n  f o r  

of  stress pulses  through a complicated s t r u c t u r e  are not  r ead i ly  

The anisotropy and inherent  ava i lab le  ,even f o r  homogeneous materials. 

inhomogeneity i n  composite materials f u r t h e r  complicates t h i s  problem. 

The importance of impact stresses i n  composite s t r u c t u r a l  design can 

b e s t  be i l l u s t r a t e d  by t h e  appl ica t ion  of these materials t o  j e t  engine 

fan blades (see Goatham, 1970). In  addi t ion t o  t h e  load requirements imposed 

by cen t r i fuga l  and v ibra tory  fo rces ,  these  blades must be designed t o  

withstand t h e  s t r e s s e s  due t o  impact with foreign objec ts  such as b i r d s ,  
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ha i l s tones ,  s tones ,  and nuts  and b o l t s .  The r e l a t i v e  ve loc i ty  of t he  

impacting body t o  the  blade can be i n  the  order  of 450 meters pe r  second 

(1500 f t / s e c ) .  

small impact times (< 50 1-1 sec)  and the  i n i t i a l  transmission of  t h e  t o t a l  

energy i n t o  a loca l  region of t he  blade.  The impact not only induces local  

c ra te r ing  o r  s p l i t t i n g  but long range damage away from the  impact area can 

r e s u l t  from the  r e f l e c t i o n  of s t r e s s  waves (spal l ing)  from boundaries and 

focusing e f f e c t s  due t o  changes i n  blade geometry. 

problem of foreign object  impact involve 

embedded high s t rength  meshes and leading edge impact pro tec t ion .  

The high speed impact of small ob jec ts  r e s u l t s  i n  very 

Solutions of t h e  

considerable ingenuity,such as 

Impact loads involve two fac to r s  which are not considered i n  s t a t i c  

One i s  the  speed of propagation of t he  stress pulse i n  

In s t a t i c  problems t h e  deformation energy can be 

s t r e s s  analysis .  

t he  mater ia l .  

d i s t r ibu ted  throughout t he  s t ruc tu re  , but  i n  impact loading the  volume of 

energy s torage is l imi ted  by t h e  speed of  propagation of t he  waves i n  

the  mater ia l .  For shor t  time impact loads,  a small amount o f  energy i n  

a small volume can r e s u l t  i n  s t r e s s e s  which can f r ac tu re  o r  otherwise 

damage the  mater ia l .  

The speeds of propagation of stress waves f o r  a number of composites 

a re  shown i n  Table I with comparable da ta  f o r  conventional s t r u c t u r a l  

mater ia l s .  These speeds depend on the  d i r ec t ion  i n  which t h e  

wave propagates ,and when the  e l a s t i c  l i m i t  i s  exceeded ,depend a l so  on the  

s t r e s s  l eve l .  These wave speeds a re  motions averaged over a local region 

of the  composite involving many layers ,  f i b e r s  o r  p a r t i c l e s  whichever i s  

the  case.  Within each cons t i tuent ,  of course, t h e  stresses propagate as 

i n  the  respect ive homogeneous mater ia l s .  
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The second d i f fe rence  between impact loading and s ta t ic  loads i n  

design i s  the  rate of change of s t r a i n .  

of s t r a i n  have been shown t o  exh ib i t  d i f f e r e n t  s t rength  proper t ies  

Composites under high r a t e s  

(Sierakowski e t  a l . ,  1970). Often t h i s  r e s u l t s  i n  h igher  ul t imate  

s t r eng th  with increasing s t r a i n  rate.  

While the  f ac to r s  of f i n i t e  wave t i m e  and rate dependent proper t ies  

are common t o  impact problems i n  a l l  s t r u c t u r a l  materials, t he  anisotropy 

and inhomogeneity inherent  i n  composites requi res  spec ia l  a t t en t ion  i n  the  

design of  an impact r e s i s t a n t  composite s t ruc tu re .  

Anisotropic waves i n  so l id s  a re  familiar t o  those i n  c r y s t a l  physics 

and seismology, however, these  e f f e c t s  are not well  known i n  s t r u c t u r a l  

design where conventional i s o t r o p i c  mater ia l s  such as aluminum and s t e e l  

a re  o f t en  used. Composite mater ia l s  have the  unique fea ture  t h a t  the  degree 

of anisotropy can be var ied  i n  t h e  mater ia l  and hence the  ana lys t  can 

change the  d i r ec t iona l  d i s t r i b u t i o n  of s t r e s s  waves i n  an impact zone and 

perhaps avoid ser ious  f a i l u r e  o r  f r ac tu re  (perhaps by a judicious choice 

of p ly  lay-urp angles) .  

The e f f e c t s  of boundaries o r  d i scon t inu i t i e s  i n  mater ia l  p roper t ies  

on s t r e s s  waves a re  well  known (see Ewing e t  a l .  , 1957). When a s t r e s s  

wave encounters a boundary,normal t o  the  wave f ron t  , separa t ing  mater ia l s  

of  d i f f e r e n t  dens i t i e s  and wave speeds, p , v , t he  s t r e s s  a t  t h e  surface 

is changed t o  

= 5 P 2  V2/(P1 v1 + P v 1 
0 2 2  
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where cr would be t h e  stress i n  material rcl" i f  the  boundary were 

not  present .  The product pv is ca l l ed  the  acous t ic  impedence and 

depends on the  type of wave (e.g. shear  o r  d i l a t a t i o n a l  i n  i s o t r o p i c  

0 

s o l i d s ) .  

Thus a wave o r ig ina t ing  i n  a "sof ter"  material i . e .  p v 
p2v2 1 1  

always s u f f e r s  a stress increase a t  a boundary, This is  indeed t h e  case 

f o r  many composites e spec ia l ly  those involving a compliant matrix,  such 

as epoxy, and a s t i f f  f i b e r  such as graphi te ,  g l a s s  o r  boron. 

Another effect  of inhomogeneity is dispers ion.  Dispersion o f  t h e  

average composite motion r e s u l t s  i n  a d i s t o r t i o n  of  t h e  stress pulse  

as it propagates.  

r ise  time, o r  per iod  o f  t he  stress pulse  decrease.  

contaiaing compressional stresses can develop t e n s i l e  stresses 

The effects of dispers ion increase as the  dura t ion ,  

Thus a pulse  i n i t i a l l y  

as the  wave propagates and perhaps induce micro-cracking i n  t h e  composite. 

The l i t e r a t u r e  on the  subjec t  of  waves i n  composites has expanded 

enormously i n  t h e  p a s t  few years  and new t h e o r e t i c a l  and experimental 

r e s u l t s  a r e  s t i l l  being repor ted .  This review then can only summarize 

the  work t o  the  da te  o f  this  wr i t ing .  Also severa l  good reviews have 

appeared a t  t h i s  wr i t ing  i n  which t h e  var ious t h e o r e t i c a l  models f o r  

waves i n  composites have been discussed, (Peck, 1971, 1972, Achenbach, 

1972). 

This chapter  w i l l  be somewhat t u t o r i a l  i n  na ture  r a t h e r  than a 

c r i t i ca l  review of t h e  var ious theo r i e s  t o  da t e .  Instead I w i l l  t r y  

t o  summarize the  r e s u l t s  t o  da t e  which seem t o  be accepted i n  t h e  f i e l d  

and which might be of  use t o  t h e  s t r u c t u r a l  dynamics ana lys t .  
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In the  following sec t ions  I w i l l  discuss 

i )  an iso t ropic  waves i n  composite s t ruc tu res  (without dispersion) 

i i )  dispers ion e f f e c t  on waves 

iii) s c a t t e r i n g  and absorption o f  waves 

iv)  shock waves i n  composites 

v) experimental r e s u l t s  

v i )  the  e f f e c t s  o f  impact 

For  a review of s t r e s s  waves i n  conventional s t r u c t u r a l  mater ia l  

see Miklowitz (1966). 
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11. ANISOTROPIC WAVES I N  COMPOSITES 

In t h i s  sec t ion  I w i l l  review those aspects of e las t ic  wave pro- 

pagation i n  an iso t ropic  mater ia l s  which a re  re levant  t o  composites. 

When the  sca l e  of t h e  changes i n  stress l eve l ,  ( r i s e  d is tance ,  wave- 

length,  e t c . ) ,  i s  much l a r g e r  than the  sizes of t he  cons t i tuents  

of composites ( f i b e r  o r  p a r t i c l e  diameter, f i b e r  spacing, p ly  spacing, 

e t c . )  t he  mater ia l  may be t r ea t ed  as  an equivalent homogeneous e l a s t i c  

mater ia l  as a f irst  approximation. In a homogeneous medium, the  wave 

speeds a r e  r e l a t e d  t o  the  e l a s t i c  constants and densi ty  by r e l a t i o n s  

of the  type Pv = C , where C is an e l a s t i c  constant.  This r e l a t ion  

* 

2 

has led t o  the use of wave theory t o  determine the  e f f ec t ive  e l a s t i c  

moduli of composite mater ia ls  when the  wavelength becomes l a r g e r  than 

the s ize  of t h e  sca l e  of inhomogeneity. Thus the  de f in i t i on  

where X i s  the  wavelength; ''a" is a s ize  associated with t h e  composite 

elements (e.g. f i b e r  spacing ,and v(x/a) is  the  phase ve loc i ty  f o r  a 

given harmonic wavelength. 

(1955) f o r  a laminated medium and by Behrens (1967a) (1967b). 

This method has been used by White and Angona 

In t h e  case of p a r t i c u l a t e  composites o r  dispers ion strengthened 

composites t he  equivalent model may be considered as i so t rop ic .  

f o r  f i b e r  composites , laminates , and unid i rec t iona l  eu tec to ids ,  t h e  

But 

* 
The exception i s  t h e  case of a composite p l a t e  with bending-extensional 

coupling. 
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equivalent s t r e s s - s t r a i n  r e l a t i o n  w i l l  be an iso t ropic  i . e .  

kR e - 
t i j  - ‘ijk!L 

is the  stress tensor  and e the  s t r a i n  tensor .  where t i j  kR 

A. Wave Speeds 

The simplest  wave t o  consider is  a plane wave with no ex terna l  

boundaries present .  For such a wave the  displacement has the  form 

The vec tor  2 defines  a plane r e l a t i v e  t o  the  mater ia l  axes and 

v i s  the  speed of the  wave. When Eqs. ( Z ) ,  (3)  a r e  put  i n t o  the  

equations of motion f o r  the  mater ia l ,  the  following eigenvalue problem 

r e s u l t s  

(‘ijk!L n k  n j  - P V k j ) %  = 0 (4) 

the  Kronecker d e l t a .  (See, e . g .  ‘ i j  where p i s  t h e  equivalent densi ty  and 

Musgrave (1954, 1970) ,and Kraut (1963)).  In summary, f o r  each wave 

d i r ec t ion  the re  are th ree  d i f f e r e n t  waves 

Ci) When the  v (i) a r e  d i s t i n c t ,  the  th ree  Polar iza t ion  vectors  

a re  orthogonal. For i s o t r o p i c  mater ia l s  it is  well known t h a t  only 

two speeds a re  d i s t i n c t  
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These a re  respec t ive ly  t h e  longi tudinal  and t ransverse (shear) waves. 

For an iso t ropic  waves however such charac te r iza t ion  is  not poss ib le  

except along symmetry d i r ec t ions .  

For many composites, o r tho t ropic  symmetry su f f i ces  t o  descr ibe 

the  mater ia l  and nine e l a s t i c  constants  are required.  

r e l a t i o n  f o r  t h i s  case i s  given by 

The s t r e s s - s t r a i n  

t 
11  

t 
22 

t 
33 

t 
23 

t 
1 3  

t 
12  

c c c  0 0  
11 12 1 3  

c c  0 0  
22 23 

c 0 0  
33 

G O  
44  

c o  
55 

C 
61 

e 
11 

e 
22 

e 
33 

2e 
23  

2e 
1 3  

2e 
12  

For s t r u c t u r a l  appl ica t ions  composites a re  usua l ly  used i n  the  

form o f  rods o r  p l a t e s .  Consider, fo r  example, t he  in-plane motion 

of a p l a t e  with t h e  x ax i s  normal t o  the  midsurface, i . e .  u = 0 . 
For wavelengths much l a r g e r  than t h e  p l a t e  thickness we neglect  t he  

2 2 
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e f f e c t s  of  dispers ion.  For t h i s  case the  equations of 

motion fo r  the  in-plane motion i n  the lowest approximation became 

(see Figure 1) 

a2u1 a2u1 a2ul A a2u3 
+ c13) ax ax 11 ax2 5 5  ax; 55 

p -  = c - + c  - + ( C  
1 3  1 

a t 2  

32U3 A a2u3 a2u3 A a h 1  
+ (' + c13) ax ax p - =  c - + c  - 

1 3  a t 2  33 ax2 55 ax2 55 
1 3 

where 

I\ 

c = c  - c 2 / c  
11 11 12  22 

,. 
c = c  - c 2 / c  

33  33  2 3  22 

A 

c = c - c  c /c 
1 3  1 3  12 2 3  22 

The constants 

arrangement o f  t h e  composite cons t i tuents .  
C i j  

can be determined from the  proper t ies  and geometric 

For  plane waves i n  t h e  p l a t e ,  two wave speeds e x i s t  f o r  each d i rec t ion  

E = (cos (9, s i n  4)  (see Figure 1) and are  determined by 

(A - pv2) (A22 - P V 2 )  - A2 = 0 
1 1  12 

where h 

A = c cos*$ + c sin24 
11 11 55 

A 

A = c sin24 + c cos24 
22 33  55 

A = A = (C + C ) sin4 cos4 
12 2 1  55 13  
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The r a t i o  A /A is  determined by s u b s t i t u t i n g  each root  v2 i n t o  

Eq .  ( 4 ) ,  (k = 1, 3 ) .  
1 3  

These values have been ca lcu la ted  f o r  a number of composites (see 

Moon, 1972a) and a re  shown i n  Figure 2 f o r  55% graphi te  fiber/epoxy 

matrix composite. As t h e  fiber lay-upangle i s  changed f o r  t h e  same 

composite,the proper t ies  of t h e  waves are seen t o  change dramatical ly .  

The d i r ec t ion  of p a r t i c l e  motion r e l a t i v e  t o  the  wave normal is 

shown i n  Figure 3 f o r  55% graphi te  fiber/epoxy matrix fou r  p ly  lay-up 

angles. For the  O o ,  -1.45 lay-up angle cases, the  d i r ec t ion  of p a r t i c l e  0 

motion tends t o  l i e  c lose  t o  t h e  f i b e r  d i r ec t ions  f o r  most wave normals. 

The -1.15' and +30° lay-up angle cases present  another departure from 
A 

the  i so t rop ic  case.  In both cases C > C . This means t h a t  f o r  
5 5  33 

waves t r ave l ing  i n  t h e  x d i r ec t ion  the  f a s t e r  wave becomes t ransverse  

and the  slower longi tudina l .  
3 

This behavior i s  a l s o  found i n  pine wood. 

B.  Wave Surfaces 

The r e l a t i o n  v ($ ) ,  i n  Figure 3 ,  i s  ca l led  the  ve loc i ty  sur face .  

However i f  t he  waves or ig ina ted  from some point  i n  the  p l a t e ,  t o  an 

observer at  pos i t i on  

t h a t  corresponding t o  t h e  wave normal @ = O . If the  a r r iva l ,  t i m e  

is t = 1, t h e  f irst  plane wave, Q , t o  a r r i v e  a t  t he  poin t  must 

s a t i s f y  

,O ) ,  t h e  f i rs t  s igna l  t o  a r r i v e  may not  be (ro 0 

0 

o r  where z Q/V ; 
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s is  c a l l e d  the  slowness vec tor  and l /v ($)  t h e  slowness sur face  (see 

e .g .  Kraut, 1963). The equation 

the slowness plane ( s  , s ) and E is normal t o  t h a t  l i n e .  In addi t ion 

;i = 1 must be tangent t o  t h e  locus of  values l / v (+ )  given by 

% 

* % = 1, then represents  a l i n e  i n  

1 2  

Thus 

r = 01Vg 
% 

where 01 i s  a constant .  

This coupled with E q .  (9) gives the  pos i t i on ,  r , t o  t h e  first a r r i v a l  

of  a plane of normal n($) generated a t  t he  o r i g i n ,  

This locus r (2 )  i s  ca l l ed  the  wave surface and f o r  in-plane p l a t e  

motion, t h e r e  e x i s t s  two such sur faces .  

f o r  t h e  system 55% graphi te  fiber/epoxy matrix (Moon, 1972a). 

These are shown i n  Figure 4 , s  

The equivalent  e l a s t i c  constants  fo r  f iber-matr ix  svstems a t  var ious 

lay-up angles were obtained by Chamis (1971). These constants ,  which are 

l i s t e d  i n  Table I1,are based on a s t a t i c  ana lys i s  o f  an eight-ply p l a t e  

using the  known proper t ies  o f  each f iber-matr ix  p ly .  

The graphite-epoxy systems cont ras t s  with o ther  composite systems 

because of i t s  high s t i f f n e s s  r a t i o ;  C / C  = 24  zero lay-mangle). 

The ve loc i ty  sur faces  fo r l ay -upang les  of +O , +15 , 230 , and +45 are 
11 3 3  

0 0 0 0 
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shown i n  Figure 2 .  

Examining t h e  wave surfaces  fo r  graphite-epoxy, as shown i n  Figures 

4, 5, one sees t h a t  t h e  inner  surfaces show pecu l i a r  cusps and noncon- 

vex i ty .  This behavioT is a l s o  characteristic of c r y s t a l  systems such 

as zinc.  Unlike the  na tu ra l  c r y s t a l s ,  we can change t h e  wave p rope r t i e s ,  

without changing t h e  material cons t i t uen t s ,  by varying t h e  f i b e r  laY-uP 

angle.  I t  becomes c l e a r  t h a t ,  as t h e  anisotropy i n  the  ou te r  

wave i s  reduced , t he  cusped behavior of t h e  inne r  waves increases .  

This is due t o  t h e  increase i n  shear  wave anisotropy (Figure 2 ) .  

Another pecu l i a r  property of wave propagation i n  t h i s  composite 

system can be noted by examination of  t h e  245' 

5 ) .  

a r r i v a l  plane wave i s  l i s t e d .  One can see  t h a t  t h e  d i s t r i b u t i o n  of  

plane wave normals i s  heavi ly  concentrated a t  pos i t ions  on the  wave 

sur face  c lose  t o  t h e  f i b e r  d i r e c t i o n s .  

waves along t h e  f i b e r  d i r ec t ions .  For t h e  o ther  f i b e r  o r i en ta t ions ,  

the  d i s t r i b u t i o n  of wave normals i s  a l so  concentrated a t  those poin ts  

on t h e  wave sur face  c lose  t o  t h e  f i b e r  d i r ec t ions  but  no t  as densely 

as i n  t h e  +4S0 lay-up case. 

f i b e r  lay-up case (Figure 

On t h e  o u t e r  wave sur face ,  t he  angle of t h e  wave normal of t h e  first 

This might imply a focusing of 

S imi la r  r e s u l t s  f o r  t h e  g l a s s  fiber-epoxy composite system have 

been ca lcu la ted  (Moon, 1971). The r a t i o  of  s t i f f n e s s e s  f o r  t h i s  case 

C /C = 3.1 (zero laY-up angle) .  The wave sur faces  f o r  t h i s  system 
1 1  3 3  

show fea tu res  similar t o  t h e  graphite-epoxy case. 
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The ve loc i ty  and wave surfaces  f o r  a boron fiber/aluminum composite 

were a l so  calculated (Moon, 1971). However, t h e  shear  ve loc i ty  i s  almost 

i so t rop ic  and no cusps appear on t h e  wave sur face .  

Weitsman (1972) and (1973) has recent ly  s tud ied  waves i n  a t ransverse ly  

i s o t r o p i c  composite with a r i g i d  f i b e r  cons t r a in t .  

C .  Flexural Waves i n  Orthotropic P la tes  

For t h e  case when the  motion includes displacements out of t he  plane 

of t he  p l a t e ,  Mindlin (1961) and co-workers have formulated an approximate 

theory t o  describe Elexural waves i n  an iso t ropic  p l a t e s .  

the  p l a t e  motion i s  expressed i n  a s e r i e s  i n  the  thickness parameter i . e .  

In t h a t  theory 

Y 
A 

2 
u = uo (x yx , t )  + u q x  ,x ,t) + ... 

1 1 1 3  1 1 3  

" 
2 

n 

u = uo (x ,x , t )  + u;(xl,x3yt) + ... 
3 3 1 3  

The average in-plane motion i s  governed by Eqs. (7)  while the  functions 

u o ,  u l ,  u1 
2 1 3  

are  coupled together  i n  t h e  equations; 
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I t  should be noted t h a t  i n  the  procedure used by Mindlin the  coef- 

f i c i e n t s  C and C i n  Eqs. (12) a re  replaced by, K C and K C , 
44  66  3 44 1 44  

respec t ive ly .  The cor rec t ion  constants  K and K were adjusted i n  

order  t o  match t h e  thickness  shear  v ib ra t ion  mode. 
1 3 

Consider the  f l exura l  plane waves. One can show t h a t  the  only plane 

wave so lu t ions  of t h e  form t h a t  s a t i s f y  Eqs. (12) a re  harmonic funct ions,  

t h a t  i s ,  

For bending motion, t h e  phase ve loc i ty  v depends on the  frequency, 

w = kv, as well as t he  wave normal Q. Mindlin (1961) has examined 

the  dependence of  v on w f o r  var ious mater ia l  an iso t ropies .  

Thus t h e  behavior of t he  bending motion a t  t h e  wave f r o n t s  cannot 

be determined i n  the  same manner as was the  extensional  motion. 

Consider t he  motion a t  the  wave f r o n t  only. Across t h i s  f r o n t ,  one 

imagines t h a t  c e r t a i n  q u a n t i t i e s  have d i scon t inu i t i e s .  The displacement 
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and t h e  s t r e s s  are assumed t o  be continuous across t h e  wave f r o n t  but 

d i s c o n t i n u i t i e s  i n  t h e  second de r iva t ives  of U are assumed. Such 

waves are c a l l e d  acce lera t ion  waves. 

I t  can be shown [Moon, 1972) t h a t  t he  wave f r o n t s  associated with 

a jump i n  t h e  bending acce lera t ions  a2u1/at2 and a2u1/at2 t r a v e l  

a t  t h e  same speeds as t h e  wave f r o n t  associated with the  extensional 

motion. There is  another wave f r o n t  corresponding t o  a jump i n  t h e  

q u a n t i t i t y  a2uo/at2 . The speed f o r  t h i s  wave i s  governed by the  

equation 

1 3 

2 

pv2 = c cos24 + c s in2+ 
66  4 4  

For the  case of a composite with symmetric p l y  o r i en ta t ion  about t h e  

midplane, 

c = c  
6 6  44  

The bending wave f r o n t  associated with t h e  jump 

a l l y  i s o t r o p i c .  

[a2u0/at2] 
2 

i s  d i r ec t ion -  

If both extensional and bending motions a re  generated simultaneously 

by impact, t h e  two extensional and two bending wave f r o n t s  w i l l  t r a v e l  

with t h e  same wave speeds. 

This conclusion does not hold if the  laminate p l a t e  has only 

a few p lys  . For example, Sun (1972b) has shown t h a t  t he  bending 

and extensional wave f ron t s  are d i f f e r e n t  f o r  a three-layered p l a t e  

( O o ,  90°, 0' f i b e r  lay-up angle) .  Thus the  use of t he  e f f e c t i v e  

modulus theory t o  p r e d i c t  t he  speeds of t he  wave f r o n t s  would appear 

t o  be v a l i d  only when the  number of  p lys  i s  large (probably - > 10 l a y e r s ) .  
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The ana lys i s  presented here  is  not unique. The same r e s u l t s  can be 

obtained i f  one considers t he  equations of motion from the  method of 

c h a r a c t e r i s t i c s .  

For  harmonic waves the  r e l a t i o n  between the  frequency w and wave 

number has th ree  branches.  For the  lowest branch 

(1) 
(k) % k 2  kb -+ 0 

Thus f o r  low frequencies the  phase ve loc i ty  

wavelength as i n  i s o t r o p i c  p l a t e s .  

frequencies,  v -+ (C / ~ ) l / ~  which is  the  i s o t r o p i c  ve loc i ty  of the  

v = w/k depends on the  

For sho r t e r  wavelengths o r  h igher  

4 4  

wave f r o n t s  as discussed above. For the o ther  two branches, (k) , 

~ ( ~ ) ( k )  

an iso t ropic  and equal t o  the  values calculated f o r  in-plane p l a t e  

waves. 

t he  phase v e l o c i t i e s  a t  high frequencies a re  constant and 

The d is t inguish ing  f ea tu re  about such waves i n  composites i s  t h a t  

these  dispers ion r e l a t i o n s  depend on wave d i r ec t ion .  In  

Figure 6 ,  dispers ion curves f o r  f l exura l  waves are given f o r  t h e  wave 

d i r ec t ions  0' , 90' f o r  .t4So lay-up angle,  f o r  55% graphi te  f i b e r /  

epoxy matrix composite using the  d a t a  i n  Table 2 . 
I t  should be noted t h a t  these  mathematical models a r e  approximate 

and w i l l  break down f o r  those Fourier components of t he  wave with wave- 

lengths of  t h e  order  of  t h e  composite cons t i tuent  dimensions. 

considerations induce addi t iona l  d i spers ion  i n  addi t ion  t o  t h a t  due t o  

the  p l a t e  sur faces .  

Such 

\ 

D. Surface Waves 

In cont ras t  t o  t h e  bulk waves discussed above, sur face  waves are 

motions with wave-like behavior along the  surface o r  i n t e r f a c e  between 

two d i f f e r e n t  mater ia l s ,  and exponential  decay with d is tance  from the  
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surface. Thus i f  x i s  normal t o  t h e  sur face ,  a surface wave has 

the  following form f o r  harmonic waves 
3 

-y(o)x3 eik(o)[x cosa + x s i n a  - vCw)t] 
1 2 u % e  

* 
These waves a re  known as Rayleigh waves (see e.g.  Ewing e t  a l . ,  1957) 

f o r  a free surface and Stonely waves f o r  an in t e r f ace .  

For an or thot ropic  mater ia l  the  ve loc i ty  of such a wave t r ave l ing  

i n  the  x d i r ec t ion  on the  surface of a ha l f  space normal t o  x 

(Figure 7) i s  given by t h e  roots  t o  t h e  following equation. 
1 3 

- pv2)]=0 (14) 
“13 - c 3 3 ( c 1 1  1’” c,, - PV2 

c c (C - PV2) 
PV2 + [ 

3 3  5 5  1 1  

Examination of t h i s  equation reveals  t h a t  one r e a l  root  lies i n  the  

i n t e r n a l ,  

Thus the  Rayleigh wave speed i n  t h i s  d i r ec t ion  is  less than the  shear  

speed [C /< I1 l2  . The motion i s  p lanar ,  i . e .  u = 0 , and can be 
55 2 

* 
Another wave known as  a Love wave e x i s t s  f o r  a surface with a l aye r  of 

d i f f e r e n t  mater ia l .  
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shown t o  be e l l i p t i c a l  i n  a plane normal t o  the  sur face .  

The Rayleigh wave speed, however, va r i e s  with d i r ec t ion  i n  the  

plane of t he  surface and has been shown by Musgrave (1954) t o  give 

a wave surface with cusps f o r  ce r t a in  anisotropic  mater ia ls  s i m i l a r  

t o  bulk shear  waves. Also, the  exis tence of such waves f o r  a l l  surfaces  

i n  the  mater ia l  has been vigorously debated i n  the  l i terature .  

However, Lin and Farnell  (1968) have found Rayleigh type so lu t ions  for 

a l l  surfaces ,  though f o r  c e r t a i n  planes and d i rec t ions  the  va r i a t ion  

of the  motion from the  surface combines exponential and harmonic 

functions.  

t o  composites should be obvious. 

While t h i s  work has been applied t o  c r y s t a l s ,  the  appl ica t ion  

E .  Edge Waves i n  P la tes  

Waves confined t o  the  edges of p l a t e s  should be important i n  t h e  

edge impact of p l a t e - l i ke  s t ruc tu res  e .g .  j e t  engine fan blades.  When 

the average p l a t e  motion l ies  i n  the  plane of the  p l a t e ,  waves analogous 

t o  Rayleigh waves e x i s t  f o r  low frequencies.  For motion out of t he  plane 

of t he  p l a t e ,  f lexura l  edge waves may propagate but  a r e  dispers ive even 

a t  low frequencies.  

1. Extensional Edge Waves 

As i n  t h e  case of bulk waves, we may look f o r  plane s t r e s s  Rayleigh 
A h 

wave so lu t ions  i n  p l a t e s .  By replacing C , C , C , by C , C 
1 1  33 1 3  1 1  3 3  

^c i n  Eq. (14) values may be obtained f o r  extent ional  edge waves i n  
1 3  

aniso t ropic  p l a t e s .  

The extension of Eq. 14 t o  p l a t e s  must be made with caution since 

t h e  plane stress approximation breaks down at frequencies approaching 
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t h a t  of  t he  first thickness shear  modes f o r  which t h e  waves became 

d ispers ive .  McCoy and Mindlin (1962) have used a higher  mode ana lys i s  

t o  examine such waves f o r  i s o t r o p i c  p l a t e s  but  t he  extension t o  

anisotropic  p l a t e s  does not  seem t o  have been made a t  t h i s  wri t ing.  

2 .  Flexural Edge Waves 

Flexural edge waves f o r  i s o t r o p i c  p l a t e s  using Mindlins p l a t e  

theory has been s tudied  by Kane (1954). No reference t o  the problem 

f o r  an iso t ropic  p l a t e s  has been found by the  author.  

sketch of  the  procedure, l e t  us consider t he  low frequency c l a s s i c a l  

As a b r i e f  

an iso t ropic  p l a t e  equation f o r  t he  t ransverse displacement u u (x ,x ,t) 
2 1 3  

a4u a4u a 4 ~  a2u 

11 ax4 1 3  55 ax2 ax2 332x4 a t2 
(15) c - + 2(c + 2c ) + c  - + p G -  = O  

1 1 3  3 

where G = 12/h2 , h i s  p l a t e  thickness.  For an edge wave propagating 

i n  the  x d i r ec t ion  w e  look f o r  so lu t ions  of t he  form 
1 

i (kx  -ut) 
1 u = A e-YX3 e 

When the  frequency is  given, y and k a re  r e l a t ed  by the  equation 

The appropriate boundary conditions require  the  moment on the  edge t o  

be zero, i . e .  

'i 2, a 2~ 
c -  + c  - = o  

1 3  8x2 33 ax2 
1 3 

(17) 



- 20 - 

and the  r e su l t an t  shear  contr ibut ions from shear  force and edge torque 

gradient t o  vanish, i .e. 

Choosing two values of y with negative r e a l  p a r t ,  and applying t h e  

boundary conditions,  w e  obtain an equation f o r  t he  phase ve loc i ty  o f  

these  waves v = w/k 

Let 

Then B 2  + 4C B - C2 = 0 ,  (choose B > 0) 
5 5  13 

F. Waves i n  Coupled Composite P la tes  

Laminated p l a t e s  made up of un id i rec t iona l  p lys  can have coupling 

between t h e  extensional o r  inplane motion and the  f l exura l  o r  out o f  

plane displacements. 

of  motion f o r  one dimensional waves i n  t h e  x d i r ec t ion ,  with u = 0 ,  

assume t h e  form (see Ashton, e t  a l .  , 1969) 

Using an e f f e c t i v e  modulous theory the  equations 

1 3 

a 3u1 a4u2 a2u2 
B - - D  - = ph - 

11 ax3 11 a d  a t 2  1 
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In  t h i s  case there is  no pure f l e x u r a l  o r  extensional  wave. 

w e  have a coupled wave 

Instead 

i (kx-ut) e 

with a d ispers ion  r e l a t i o n  

For low frequencies ,  o r  when B /A2 << 1, t h e  wave with dominant 
11 1 1  

extensional  motion has t h e  phase ve loc i ty  

where v2 = A,,/ph . 
0 

Simi lar ly ,  f o r  low frequencies  (k -+ 0) o r  small 

with f l e x u r a l  motion dominant, has  t h e  phase ve loc i ty  

B,, , t h e  mode 

We might no te  here  t h a t  t h e  extensional  shear  wave i n  t h i s  d i r ec t ion  

i s  uncoupled from t h e  f l e x u r a l  motion. 

coupling i s  unique t o  composites, it is supr i s ing  t h a t  such waves i n  lami- 

na ted  s t r u c t u r e s  have not  received as much a t t e n t i o n  t o  da te  as o t h e r  t op ic s  

i n  dynamics of  composites. 

f ron t s  i n  laminated p l a t e s  with bending-extensional coupling. He a l so  observes 

coupling of the  inplane and f l e x u r a l  motions i n  the  var ious waves. 

Since t h e  extensional-f lexural  

Sun (1972b) has s tud ied  the  propagation of  wave 
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111. DISPERSION I N  COMPOSITES 

One de f in i t i on  of wave dispers ion is the  d i s t o r t i o n  of t he  pulse  

shape as it propagates through the  mater ia l .  

from at tenuat ion i n  which energy i s  sca t t e red  out of t he  waves o r  con- 

ver ted t o  h e a t .  

I t  i s  t o  be dis t inguished 

A more prec ise  de f in i t i on  of dispers ion rests on the  

assumption of a l i n e a r  mater ia l  and the  theorem t h a t  any wave pulse  i n  

the  mater ia l  can be expressed as  a l i n e a r  sum of harmonic waves, e .g .  

f o r  a one dimensional wave t h e  displacement might have the  form 

For a non-dispersive mater ia l  t he  phase ve loc i ty  of a l l  t h e  harmonic 

components are equal.  

dynamics of i so t rop ic  mater ia ls  i n  t h e  form of rods,  p l a t e s  and s h e l l s .  

Examples of wave dispers ion are  common i n  s t r u c t u r a l  

Although the  bulk waves i n  e l a s t i c  mater ia ls  a re  non-dispersive,  the  

introduct ion of bounding sur faces ,  which define the  s t r u c t u r a l  element, 

causes the  r e f l e c t i o n  of these waves from the  surface t o  depend on 

the  wavelength ( A  = 2n/k = 2nv/w) . . If rrarr  represents  a length 

parameter (thickness,  diameter) then ka o r  wa/v become c r i t i c a l  

parameters i n  the  problem of  wave dispers ion.  

I t  is  only na tu ra l  then t o  expect t h a t  inhomogeneities such as 

f i b e r s ,  laminates o r  p a r t i c l e s  i n  a material matrix w i l l  r esu l t  i n  a 

g rea t e r  dispers ion of waves as t he  wavelength approaches the  s ize  o r  

spacing of t h e  composite cons t i tuents .  I t  should be noted here t h a t  

when a composite i s  used as a s t r u c t u r a l  element there  w i l l  be two 
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sources of dispers ion;  t h a t  associated with t h e  lengths of  mater ia l  

elements, e .g .  f i b e r  diameter, o r  p ly  thickness ,  and t h a t  associated 

with t h e  s t r u c t u r a l  dimensions. 

w i l l  become important f o r  wavelengths much longer than those of  t he  

order  o f  t h e  material elements. 

I t  should be expected t h a t  t h e  l a t t e r  

There have been th ree  general  approaches t o  mater ia l  dispers ion 

i n  composites : 

i )  

i i )  

exact  so lu t ions  of elastodynamic equations 

approximate so lu t ions  of elastodynamic equations 

i i i )  micro continuum theor i e s  

Several  reviews on waves i n  composites have appeared (Peck, 1971, 

1972, Achenbach, 1972) i n  which t h e  various models f o r  wave dispers ion 

have been discussed.  The reader  i s  r e fe r r ed  t o  these  reviews f o r  

de t a i l ed  discussion of t he  various approaches. 

t r y  t o  summarize t h e  p r inc ip l e  conclusions of t he  work on dispers ion 

published t o  da te .  

A.  Pulse Propagation and Dispersion 

In t h i s  Chapter I w i l l  

While t h e o r e t i c a l  descr ip t ions  of dispers ion of ten  employ an 

i n f i n i t e  t r a i n  of  harmonic waves, t he  engineer i s  more of ten  in t e re s t ed  

i n  the  propagation of  stress pulses  i n  a medium. 

l a t i o n  of t h e  e f f e c t s  o f  dispers ion i s  s t ra ightforward.  One decomposes 

the  s t r e s s  pulse  a t  a given t i m e  i n t o  a spectrum of harmonic waves 

and uses t h e  phase ve loc i ty  t o  t r a n s l a t e  each component wave, reconstruc- 

t i n g  the  pulse  a t  a l a t e r  time using Eq .  (22). 

last  decade have made t h e  execution o f  t h i s  procedure reasonably easy. 

Conceptually, calcu- 

Two developments i n  the  
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One too l  i s  the  d i g i t a l  computer and t h e  development of  e f f i c i e n t  Fourier  

summing algorithms such as the  "fast Fourier  transform". 

the ana ly t i ca l  foundation developed by Skalak (1957) and o thers  

f o r  using an approximate d ispers ion  r e l a t i o n  f o r  t he  phase ve loc i ty  

The o t h e r  i s  

'L % v (1 - ak2) 
0 - 

o r  

v % v (1 - 6 2 )  0 - 

f o r  large times a f t e r  impact o r  la rge  d is tances  from t h e  wave source.  

Peck (1971), Peck and Gurtman (1969) and others  have explored i n  d e t a i l  

the e f f e c t s  of dispers ion i n  layered composites. They have demonstrated 

t h a t  a wave with a stress d iscont inui ty  w i l l  be smoothed out ,  t h a t  stress 

overshoot can occur, and t h a t  an i n i t i a l  compression pulse  can develop 

t e n s i l e  s t r e s s e s  as t h e  wave propagates.  

understood s ince  the  loca l  inhomogeneities w i l l  r e f l e c t  p a r t  of t h e  

These e f f e c t s  can be h e u r i s t i c a l l y  

propagating s t r e s s  d i scont inui ty  a t  each layer .  Multiple r e f l e c t i o n s  i n  

each l a y e r  w i l l  delay p a r t  of t h e  pulse  and e f f e c t i v e l y  broaden the  average 

stress i n  t h e  pulse .  Fur ther , the  loca l  inhomogeneities can change the  

s ign  of t he  r e f l e c t e d  stress as well as raise the  s t r e s s  at  a l aye r  

i n t e r f ace .  Examples of t h e  e f f e c t s  of dispers ion a re  shown i n  Figures 8 ,  9 

where a fast Fourier  computer rout ine  was used. Case I (Fig. 8) involves the  

example o f  decreasing phase ve loc i ty  with frequency. I t  has been shown 

(Peck, 1971) t h a t  when t h e  input i s  a s t e p  i n  stress t h e  response is 

r e l a t e d  t o  an i n t e g r a l  of t h e  Airy func t ion  
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Smoothing of t h e  s t r e s s  jump can be seen i n  Figure 8,as  well as t h e  

overshoot r i g h t  after t h e  a r r i v a l  of the  pulse .  A t  t h e  t a i l  end, t he  

s t r e s s  is seen t o  change s ign .  This dispers ion is c h a r a c t e r i s t i c  

of longi tudina l  waves propagating down the  f i b e r s  o r  layers  as well 

as across t h e  l aye r s .  

Case I1 involves increasing phase ve loc i ty  with frequency o r  

wave number. 

the  f i b e r s  o r  l aye r s .  

previous case,  i n  t h a t  s t r e s s  r eve r sa l  obtains  f o r  e a r l y  time. 

This case i s  found f o r  shear  waves propagating down - 
In Figure 9 ,  the  response seems t o  mirror  t he  

B. Dispersion i n  Rods and Pla tes  

Mechanicians have long been familiar with t h e  effects of geometric 

d i spers ion  when c l a s s i c a l  mater ia l s  take  the  form of rods and p l a t e s .  

For i s o t r o p i c  cy l ind r i ca l  rods the  long wavelength dispers ion r e l a t i o n  

was given by Chree (1890) and o thers  

where I, is  Poissons r a t i o ,  and a i s  the  rod r ad ius .  For an iso t ropic  

rods an equivalent dispers ion r e l a t i o n  f o r  t h e  phase ve loc i ty  (neglecting 

mater ia l  dispers ion)  was worked out by Pot t inger  (1970) 

v 2 v  [l - B ~ 1 2 ( k a ) 2 ]  1 ka << 1 
0 

1 1 V I  = - [S2 + s2 + - s2 + s2 15 + s2 16 ] 1 / 2  
13 1 4  12 42-S 

1 1  
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where v i  = 1/S P , are t h e  e las t ic  compliances of t h e  

composite. Pot t inger  po in ts  out t h a t  t h e  accuracy of  t h i s  approxi- 

mation depends on the  values of u t  and a/A. For 2% deviat ion from t he  exact 

dispers ion r e l a t i o n ,  2a/A < 0.6 f o r  u t  = 0.1, and 2a/A < 0.16 f o r  V '  = 0.4. 

and Sij  
1 1  

If t h e  f i b e r  d i r ec t ion  of a unid i rec t iona l  composite i s  var ied  

r e l a t i v e  t o  t h e  rod axis  , d i f f e r e n t  dispers ion r e l a t i o n s  are obtained 

f o r  each angle.  

composite. 

An example is shown i n  Figure 10 f o r  a Boron-Aluminm 

For a longi tudinal  wave i n  a p l a t e  one can der ive a similar d i s -  

pers ion r e l a t i o n  f o r  

i n e r t i a .  For a wave 

normal t o  the  p l a t e ,  

anis  o t rop i c p 1 a t  e s i n  co rpo ra t  ing the  t ransverse  

propagating i n  t h e  x d i rec t ion ,  and x 

t h e  phase ve loc i ty  is given f o r  long wavelengths 
1 2 

,. 
where C w a s  defined i n  E q .  ( 7 ) ,  and d is  t h e  p l a t e  thickness .  

11 

The Eqs. (24) , (25) neglect  t he  mater ia l  d i spers ion  due t o  t h e  

inhomogeneous na ture  of  t h e  composite, which becomes increasingly 

important as the  wavelength approaches the  scale of t h e  s ize  of  t h e  

cons t i tuents .  Such e f f e c t s  are considered i n  the  next sec t ion .  
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C. Dispersion i n  a Layered Composite 

We now examine the  propagation of e las t ic  waves i n  a s o l i d  made up 

of a l t e rna t ing  layers  of d i f f e ren t  material s t i f f n e s s e s  and dens i t i e s .  

This model.has been used by many authors t o  examine the  e f f e c t s  of  

dispers ion i n  composites (Peck and Gurtman, 1969; Sun, Achenbach, Herrmann, 

1968). 

authors have given a t t en t ion  (Rytov, 1955). The wave concept f o r  t h i s  

system i s  the  same f o r  connected d i sc re t e  p a r t i c l e  chains as described 

by Br i l lou in  (1963). 

I t  i s  a l so  an important problem i n  seismology t o  which numerous 

A c e l l  is  defined as two adjacent l aye r s .  A loca l  c e l l  coordinate 

rl 

pos i t ion  t o  any p a r t i c l e  i n  the  composite is given by 

a i s  the  c e l l  length,  a = d + d . A displacement wave i n  the  direc-  

t i o n  normal t o  the  layer ing has the  form 

w i l l  be used t o  d is t inguish  one c e l l  p a r t i c l e  from another.  The 

x = na + rl where 

1 2 

We can consider e i t h e r  longi tudinal  waves f o r  which u represents  

a displacement normal t o  t h e  layer ing o r  a t ransverse wave where u repre- 

s en t s  t he  displacement p a r a l l e l  t o  t he  layer ing.  

0 

the  longi tudinal  speed of sound i n  t h e  mater ia l .  

w i l l  represent  t h e  shear  s t r e s s  and 

the mater ia l .  

In the  former case l e t  

be  t he  normal s t r e s s  on any plane p a r a l l e l  t o  t h e  layer ing and c 

For t h e  t ransverse case cr 

c t h e  speed of a shear  wave i n  

The balance of momentum is  given by t h e  following equation 
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along with t h e  s t r e s s - s t r a i n  r e l a t ion ;  

These equations must be s a t i s f i e d  i n  each of t he  two materials and 

the so lu t ions  i n  each l aye r  must satisfy boundary conditions of cont inui ty  

of s t r e s s  vector  and displacement. Solutions which s a t i s f y  the  above 

equations and t h e  cell  boundary conditions a t  11 = 0 are  given by 

wQ + B s i n  a] ikna 
U (rl) = e [A cos - In C C 

1 1 

WQ 

C 
2 

B s i n  -1 wn p 1  c o l  [A COS - + ikna 
C P C  

u (11) = e 2n 
2 2 2  

- i w t  (The f a c t o r  e has been dropped f o r  convenience). [The term pc is  

ca l l ed  the  acous t ic  impedence and i s  proportional t o  the  r a t i o  of  stress/ 

ve loc i ty  and is  analogous t o  the  same concept in  e l e c t r i c a l  systems.] 

The boundary conditions a t  t he  nth c e l l  - (n + l ) th  cel l  i n t e r f ace  

y i e l d  two homogeneous a lgebra ic  equations f o r  A, B and a l so  gives 

the  dispers ion r e l a t i o n .  

wd2 s i n  - s i n  - wdl w d 2  (1 + P2) cos - - U d l  cos ka = cos - 
C C 
1 2 

C C 2P 1 2 
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This r e l a t i o n  is  pe r iod ic  i n  k and symmetric about t he  k = 0 

ax i s .  For each k i n  the  Br i l lou in  zone, -IT < k a 2 IT t he re  - 

are  an i n f i n i t e  number o f  values f o r  w and hence an i n f i n i t e  

number of branches. There is  one acous t ic  branch f o r  e i t h e r  t ransverse 

o r  longi tudinal  waves and may be  obtained f o r  long wave lengths by 

expanding Eq. (26) about k = 0 ,  w = 0 ; 

w =  V k  
0 

where 

2 2 
(l+p2) d ld2  

L =  V [-+I + 1-q + 2p a 2 c c  
1 2  0 

When the  acous t ic  impedances a re  equal 

v c  C 
0 1 2 

which is  j u s t  t h e  sum of the  times f o r  a wave t o  t r ave r se  each of  

t he  layers  i n  t h e  cel l .  
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For t h i s  case the  waves a re  non-dispersive.  This i s  t r u e  because the re  

a re  no r e f l e c t i o n s  a t  an i n t e r f a c e  of  two mater ia l s  when t h e  acous t ic  

impedances a re  matched. 

If  the  successive branches a re  t r a n s l a t e d  t o  successive zones, 

the  dispers ion r e l a t i o n  takes  t h e  character  of a continuous homogeneous 

medium, as shown i n  Figure 11. However there  are s top  bands pro- 

por t iona l  t o  the  mismatch of impedance. This behavior i s  a l s o  char- 

a c t e r i s t i c  of quantum e lec t ron  waves i n  a per iodic  p o t e n t i a l  of a 

conducting s o l i d .  

For long wavelengths the  d ispers ion  r e l a t i o n  Eq. (26) can be 

expanded about w = 0 ,  k = 0 ,  

r e l a t i o n  f o r  t he  lowest o r  "acoustic" wave mode. 

t o  obtain an approximate dispers ion 

v v (1  - a(kd)2)  
0 - 

where 

and 

6 = d /a ,  6 = d /a. 
1 1 2 2 

Note t h a t  when p = 1, a = 0 . 
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The long wavelength phase ve loc i ty  can be shown t o  be r e l a t ed  t o  t h e  

equivalent s ta t ic  homogeneous e l a s t i c  constant f o r  the  mater ia l ,  i . e .  

f o r  longi tudinal  waves 

v; = c /p  
1 1  

p = p v  + p v  
1 1  2 2  

and 

where , V = d / (d l+d  1 V = d / (d l+d  ) 
1 1 2 2 2 2 

In the  terminology of Herrmann and Achenbach (1968) 

t o  the  e f f e c t i v e  modulus, 

s t i f f n e s s  which i s  frequency o r  wavelength dependent. 

vo i s  r e l a t ed  

whereas v is  r e l a t e d  t o  an e f f e c t i v e  
1 

More general ly  consider a composite made up of  th ree  dimensional 

repeat ing c e l l s ,  such t h a t  

is a la t t ice  vector between corresponding points  i n  any two c e l l s .  

vectors  a re  ca l l ed  a bas i s  set f o r  t h e  mater ia l .  One can think of  the  

mater ia l  p roper t ies  p ,  Ci j  as  per iodic  functions i . e .  p (x) = P (x + ,&I. 

I t  is  well known t h a t  wave-like so lu t ions  e x i s t  f o r  such a medium of 

the  form 

& = Rel + m@2 + ne ( R ,  m, n ,  in tegers )  
3 

The 
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Thus the  motion var ies  by a constant phase f ac to r  from cell  t o  c e l l  

and the  problem is  reduced t o  f inding the  motion i n  a s ing le  cel l  

i . e .  U (r) defined by & = 0 .  Further i f  one wr i tes  'Lo 'L 

i k * r  
'LO u ($1 = e 'L 'L ,wo(x) 

The function !(g) must be per iodic ,  

y0ca + &I = ,wo($) 

For f i b e r  composites i n  two dimensiona, per iodic  arrays one would 

have only two bas i s  vectors  i n  t h e  plane normal t o  the  f i b e r  d i rec t ions  

but  s imi l a r  proper t ies  on 8 would obtain.  

Other work on the laminated composite includes t h a t  of Sve (1971a, 1971b) who 

examined thermoelast ic  e f f e c t s  and waves oblique t o  the  layer ing.  

In addi t ion t o  t h e  layered o r  laminated composite, dispers ion i n  

f i b e r  o r  rod reinforced composites has been s tudied.  Approximate 

solut ions f o r  t h i s  problem were given by Puppo e t  a l .  (1968), Haener 

and Puppo (1969), Jones (1970) and Ben-Amoz (1971). Jones shows the  

phase ve loc i ty  f o r  longi tudinal  waves t r a v e l i n g  down the  f i b e r s  , 

mode dispersed down f o r  t h e  lowest mode, as i s  indicated by experiments. 

( h a y  e t  a l .  (1968), Tauchert and Guzelsu (1972)). He  a l so  ca lcu la tes  
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t he  cutoff  frequency of t h e  second mode ,for lon  

terms of the  matrix and f i b e r  p rope r t i e s .  

D. 

n a l  w 

Combined Material and S t ruc tu ra l  Dispersion 

As mentioned above, dispers ion due t o  s t r u c t u r a l  geometry (e.g. 

i n  rods o r  p l a t e s )  and dispers ion due t o  material microgeometry (e.g. 

f i b e r  s i z e  and spacing) have been s tudied  separa te ly  but  i n  ac tua l  

s t ruc turesboth  a re  present .  

these e f f e c t s  a r e  examined simultaneously is t h e  theory of laminated 

A class of problems i n  which both o f  

p l a t e s  and s h e l l s .  Multi layer p l a t e s  have been s tudied by Jones (1964), 

Sun and Whitney (1972), Biot (1972), Dong and Nelson (1972) , Scott  

(1972), and Sun (1972a). The study of waves i n  c i r cu la r ly  laminated 

rods o r  s h e l l s  of two mater ia ls  has received a t t en t ion  from Lai (1968), 

McNiven e t  a l .  (1963) , Armenakas (1965), (1967) Whit t ier  and Jones 

(1967) and Chou and Achenbach (1970). 

One can perhaps hazard a guess as t o  t he  comparison of t h e  two 

e f f e c t s  on pulse propagation by an appeal t o  the  head of t he  pulse  

approximation discussed above. For longi tudinal  waves i n  a rod o r  

p l a t e  t he  dispers ive r e l a t i o n  f o r  a non-dispersive mater ia l  has t h e  

form, f o r  long wavelengths 

where a i s  a s t r u c t u r a l  thickness o r  diameter var iab le .  The constant 

v is  r e l a t e d  t o  t h e  square root  of an elastic modulus. 

m a1 i s  i i s p  as i n a t e  o r  f i b e r  

If t h e  
1 
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the  constant v 

ness which i t s e l f  depends on t h e  wavelength 

i s  r e l a t ed  t o  t he  square root of an e l a s t i c  s t i f f -  
1 

v '" vo[ l  - 
1 

B2 21 

where b is a f i b e r  diameter o r  lamination thickness.  The combined 

e f f ec t s  of both s t r u c t u r a l  and mater ia l  dispers ion thus have the  form 

In most composites, b/a << 1 , s o  t h a t  it would appear t h a t  t he  e f f e c t  

of mater ia l  dispers ion,  where the  s t r u c t u r a l  geometries guide the  waves , 

can only become important when 6 >> a. 

I 

The corresponding problem f o r  a composite beam has been examined 

i n  de t a i  by Sun (1972) i n  which he examines waves i n  a laminated beam 

using an e f f ec t ive  s t i f f n e s s  continuum theory assuming t h a t  each 

layer  obeys the  Timoshenko beam assumptions. 

f o r  a t en  layered p l a t e  with both an exact analysis  and an e f f e c t i v e  

modulus Timoshenko beam theory. For  a l t e rna t ing  layers  , of shear  

moduli i n  t h e  r a t i o  o f  100, he found t h a t  the  e f f ec t ive  modulus 

model, based on Voight averaging of t he  constants ,  agreed with the  

exact analysis  f o r  2 W h > l  where h is the  t o t a l  beam thickness .  

For waves o f  sho r t e r  wave length the  e f f ec t ive  modulus model deviated 

subs t an t i a l ly  from t h e  microstructure and exact models. 

E .  Continuum Theories f o r  Composites 

Sun compared h i s  theory 

When t h e  dimensions of t h e  cons t i tuents  of a mixture (e.g. f i b e r  
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diameter, p ly  thickness) are much smaller than t h e  s t r u c t u r a l  dimen- 

s ions ,  t he  engineer is of ten  s a t i s f i e d  with averages o f  t he  motions 

of t he  cons t i tuents .  In such cases a continuum model may s u f f i c e  

t o  describe the  motion i n  which t h e  inhomogeneities a re  "smoothed 

out". 

t o  describe conventional s t r u c t u r a l  materials which have a hetero-  

Examples of such are found i n  the  use of classical e l a s t i c i t y  

geneous gra in  s t ruc tu re .  A similar model f o r  laminated composites, 

using an e f f e c t i v e  modulus theory has already been discussed above 

which does not include mater ia l  dispersion of waves (Chamis, 1971). 

Attempts t o  construct  continuum descr ipt ions of  dispers ion i n  

composites have been var ied ,  bu t  there  a r e y i n  generalytwo bas i c  

approaches. The axiomatic method, is character ized by 

the  assumption of a s tored  energy function with c e r t a i n  funct ional  

dependence on t h e  deformation descr ip tors .  

var iab les  include descr ip tors  f o r  t he  motion of t he  microconsti tuents , 

The kinematic 

e.g.  f i b e r s  o r  p a r t i c l e s ,  i n  addi t ion t o  the  average motion 

a t  a po in t .  Examples of t h i s  method are given by Mindlin 

(1964) , theory of "microstructure i n  e l a s t i c i t y " ,  Eringen (1966 , 1968) 

Eringen and Suhubi (1964), theory of micropolar e l a s t i c i t y  and micro- 

morphic continua respec t ive ly ,  and a l so  a mixture theory approach 

by Green and Naghdi (1965). 

broad c lass  of mater ia ls  and i n  t h e  l inear ized  version of these  theor ies ,  

These theor ies  attempt t o  character ize  a 

contain a g rea t  number of material constants which must be determined 

by experiment. Ozgur (1971) f o r  example has used Eringen's micropolar 

theory i n  an attempt t o  descr ibe or thot ropic  f i b e r  composites. H i s  model 
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uses 30 material constants  as compared t o  9 constants f o r  classical 

or thot ropic  e l a s t i c i t y .  

d i spers ion  phenomena but  does not  p red ic t  dispers ion f o r  longi tudinal  

waves. 

This theory r e s u l t s  i n  t h e  cor rec t  shear  

In  con t r a s t  t o  t h e  f i rs t  method the  second approach starts 

from an assumption o f  a knowledge of  t h e  proper t ies  of each cons t i tuent ,  

and by averaging, "smoothing" and energy methods t r i e s  t o  a r r i v e  at 

a continuum formulation i n  which the  material constants are known i n  

terms of t he  p rope r t i e s  of  t h e  cons t i tuents .  An example of  t h i s  method 

has been given by Achenbachand Herrmann (1968a) (1968b) i n  which t h e  

microelements a re  f i b e r s  embedded i n  an e l a s t i c  matrix.  The f i b e r s  

were assumed t o  behave as Timoshenko beams. 

continuum is  assigned two kinematic va r i ab le s ,  t h e  average displacement 

a t  a poin t  x , and the  f i b e r  r o t a t i o n  vec tor  which i s  independent 

of t he  vec tor  . The r e s u l t i n g  theory thus has s i x  d i f f e r e n t i a l  

equations o f  motion t o  be s a t i s f i e d  a t  each poin t .  

able  t o  p red ic t  d i spers ion  f o r  shear  waves. 

t he  f i b e r s  and motion t ransverse  t o  t h e  f i b e r s  t he  following d ispers ion  

r e l a t i o n  i s  obtained 

Each po in t  i n  t h e  equivalent  

These authors are 

For a wave normal along 

k2(1 + 5 (kr )2)  
I .  I ,  

p"  .2 'Lc 
4 4  

77 

where p *  is  t h e  composite dens i ty ,  C an e f f e c t i v e  shear  modulus, 

rl Ef , r , t h e  f i b e r  modulus and 
4 4  

t h e  volume f r a c t i o n  o f  f i b e r ,  and 
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r a t i o n  respect  

polymer matrix t h e  r a t i o  

dispers ive effect of t h e  reinforce 

wavelengths much l a r g e r  than t h e  f i b e r  diameter. This model however 

does not  p red ic t  dispers ion f o r  longi tudinal  waves. This problem 

was solved q u i t e  successful ly  i n  a s e r i e s  of papers by Sun e t  a l .  (1968), 

Achenbach e t  a l .  (1968) f o r  t h e  case of a laminated composite and by 

Achenbach and Sun (1972) f o r  a f i b e r  re inforced composite. 

dispers ion r e l a t ions  predicted t h e  cor rec t  phenomenon at low 

frequencies,  Figure 1 2 .  The exact harmonic wave so lu t ion  f o r  a l t e rna t ing  

The r e su l t i ng  

e l a s t i c  i s o t r o p i c  layers  was obtained by Sun e t  a l .  (1968) and compared 

with the  continuum theory dispers ion r e l a t i o n .  These r e s u l t s  (Figure 12) 

show good agreement a t  low frequencies and f o r  mater ia ls  whose moduli 

do not  d i f f e r  very much. 

A similar method has been employed f o r  f i b e r  composites by Wu (1971). 

In these  methods, one e s t ab l i shes  a loca l  cell  at each point  

continuum containing a f i b e r  and p a r t  of t he  matrix.  

3 i n  t he  

Embedded i n  the  

c e l l  is a loca l  coordinate system 6 . There is assumed a t  each poin t  

x , a loca l  o r  microdisplacement f i e l d .  In the  case of Wu t h i s  takes 

the  form 

% 

f o r  i n  g f i  d matrix.  In the  
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Achenbach and Sun (1972) they assume d i f f e r e n t  forms of  displacement 

f i e l d s  f o r  f i b e r  and matrix mater ia l  i n  each c e l l .  

Thus f o r  r < a , c l  = r cos 8 ,  5 = r s i n  e 
2 

and f o r  r > a 

This procedure i s  repeated f o r  neighboring c e l l s  and t h e  average d i s -  

placements along t h e  adjoining c e l l  boundaries a re  matched. In the  

model of Wu (1971) t h i s  r e s u l t e d  i n  cons t r a in t  equations on t h e  loca l  

c e l l  s t r a i n s  

S imi la r  r e l a t i o n s  a re  obtained i n  t h e  mode, of Achenbach and Sun. The 

concept of  a loca l  cons t r a in t  was first introduced i n  these  theo r i e s  

i n  t h e  e a r l i e r  work of  Sun, Achenbach and Hermann (1968) f o r  t h e  laminated 

continuum. 

To obta in  equations of motion i n  these  methods the  loca l  displace- 

ment Eq. (28) i s  put i n t o  cons t i t u t ive  equations for  t h e  f i b e r  and 
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matrix. The r e s u l t i n  

over t h e  cell  c 

volume t o  y i e l d  t 

A similar procedure is ca r r i ed  out f o r  the  k i n e t i c  energy densi ty  a t  4 

T(z, 4). 
equations of motion and boundary conditions 

Hamilton's p r inc ip l e  is then used t o  f ind  the  d i f f e r e n t i a l  

sulj ject  t o  t he  cons t ra in ts  between xy 4, (e.g. Eq. (29)) and where W 

is the  work done on t h e  boundary. 

Grot (1972) has recent ly  completed similar work on the  f i b e r  composite 

continuum and has obtained very good agreement with t h e  experiments of 

Tauchert and Guzelsu (1971), Achenbach (1972) i n  another review i n  t h i s  

series discusses t h e  continuum models of composites. 

Other work of a similar na ture  includes Ben-hoz (1968), Barker (1970), 

Bartholomew (1971), Bolotin (1965), Gurtman e t  a l .  (1971) Hegemier (1972) 

and Koh (1970). Several mixture theor ies  have been developed i n  which the  

contains terms proprotional t o  the  difference (,u (13- cL u12)) 

between the  average displacements of each const i tuent  (e.g. f i b  

les of t h i s  a r e  the  works of Bedford and Stern (1971), 

work,applied t o  

s i t e ,  estimates t an  given i n  
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terms of the  f i b e r  and matrix proper t ies  and geometry. 

models have been given by Lempriere (1969) and Moon and Mow (1970) f o r  

spher ica l  p a r t i c l e s  i n  a matrix.  

Other mixture 

Two comments regarding continuum theor ies  of composites a re  i n  

order before f in i sh ing  t h i s  sec t ion .  First ,  when the  mathematical 

s t ruc tu re  of these ad hoc continuum models a re  examined, one notes a 

s imular i ty  with t h e  axiomatic theor ies  discussed e a r l i e r .  

of Sun e t  a l .  compares with Mindlins (1964) mic roe la s t i c i ty  theory and 

Wu's model compares with Eringen's micromorphic thoery.  

Achenbach (1968) have discussed the  appl icat ion of Cosserat theory of 

continua t o  composite mater ia l s .  While spec ia l ized ,  these ad hoc 

theor ies  however have the  advantage of predict ing the  e f f e c t i v e  

mater ia l  constants f o r  t he  composite i n  terms of t he  mater ia l  constants 

of the  cons t i tuents .  This approach enables the  analyst  t o  quickly 

check h i s  predicted dispers ion r e s u l t s  , 

while i n  t h e  more general  theor ies  such confirmation is not b u i l t  i n t o  

the  theory. 

Thus the  model 

Herrmann and 

The second remark concerns the  usefulness of continuum theor i e s .  

While it is remarkable t h a t  t h e  laminate continuum theory of Sun e t  a l .  

(1968) checked so very well with exact theory,  what is more remarkable 

is  t h a t  i n so fa r  as wave propagation is  concerned the  d i g i t a l  computer 

was s u f f i c i e n t  t o  provide t h e  exact dispers ion r e l a t i o n .  

of ana ly t i c  methods not withstanding,continuum models of composites w i l l  

c e r t a in ly  f ind  s t rong  competition from computer or ien ted  methods (such 

as the f i n i t e  element method) i n  the  fu tu re .  

The e f f icacy  
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F. Var ia t iona l  Methods f o r  Per iodic  Composites 

When the  cons t i tuents  o f  a composite are arranged i n  a per iodic  

array,such as a laminated medium o r  a f i b e r  composite with uniform 

spacing, t he  displacements and stresses under harmonic waves Can 

This problem i s  ca l l ed  

Thus 

be represented by per iodic  funct ions.  

"Floquet theory" i n  t h e  subjec t  of  d i f f e r e n t i a l  equations.  

t he  problem i s  reduced t o  f inding a so lu t ion  i n  one c e l l .  Such 

problems have analogues i n  s o l i d  s ta te  theory of e lec t ron  waves 

i n  per iodic  po ten t i a l s .  The so lu t ion  of the  Schroedinger equation f o r  these 

problems by va r i a t iona l  methods has been out l ined by Kohn (1952). 

The extenst ion of these methods t o  per iodic  composites has been made 

by Kohn e t  a l .  (1972) , who applied the  theory t o  a laminated composite. 

Wu (1971) has applied the  va r i a t iona l  method of t he  above authors t o  

a wave propagation normal t o  a per iodic  f i b e r  composite mater ia l .  

Wheeler and Mura (1972) and TobBn (1971), have looked a t  similar 

problems. 

According t o  the  Floquet theory,  wave l i k e  so lu t ions  t o  the  

equations of motion i n  a pe r iod ic  medium are  themselves represented 

i n  terms of per iodic  functions 

- i w t  i (k-x-ut) 
= U ($)e 

0 
= !iy.tf)e 
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where 8 i s  a l a t t i c e  vector .  If one writes the  stresses i n  the  

form 

- i w t  = 6. .e t i j  ij 

the  equations of motion become 

+ p W2Uk = 0 OkR , R 

A statement of a va r i a t iona l  theorem is as follows; (Kohn e t  a l . ,  

The problem of f inding so lu t ions  t o  the equations of motion i n  

terms of t he  functions 

and s a t i s f y  t h e  displacement and stress vector  cont inui ty  conditions across 

the  c e l l  and c e l l  const i tuent  boundaries, is  tantamount t o  finding the  

s t a t iona ry  value o f  the  funct ional  

U (%) which a re  per iodic  i n  the  l a t t i c e  vectors ,  
0 

' C  
with respect  t o  a complete s e t  of functions 

l a t t i c e  vectors ,  continuous and have continuous f irst  der iva t ives  i n  the  cell  

(ekL 

{U 1 
' L O  

which a re  per iob , in  the  

i )* 
is the  s t r a i n  tensor  and ind ica tes  complex conjugate).  

A 

This theorem allows one t o  choose a l i n e a r  combination of functions 

from {U } t o  approximate the  wave i n  the  c e l l .  The amplitudes of 

each of  t he  functions a r e  chosen so as  t o  extremize the  funct ional  
0 

I[;] . 
from which one obtains  t h e  dispers ion r e l a t i o n  between 

This procedure leads t o  a homogeneous s e t  of a lgebra ic  equations 

w and 5 . 
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There w i l l  be  as many branches t o  t h e  r e l a t i o n  

approximating funct ions.  

a($.) as the re  are 

While the  method can produce a reasonable approximation t o  t h e  

d ispers ion  r e l a t i o n ,  t h e  stresses i n  t h e  ce l l  may not  be as accurate  

and lead  t o  discontinuous stress vec tors  a t  t h e  cons t i tuent  boundaries , 

(Kohn e t  a l . ,  1972) Bevilacqua, Lee (1971). However more general  

v a r i a t i o n a l  schemes can achieve b e t t e r  stress determination as well as 

obtaining the  d ispers ion  r e l a t i o n .  (See e .g .  Nemat-Nasser (1972)). 

Lee (1972) has recent ly  reviewed such methods f o r  pe r iod ic  composites 

Krumhansl (1970) has appl ied Floquet theory t o  the  propagation of t r a n s i e n t  

stress pulses  i n  a layered medium and similar work has appeared by 

Krumhansl and Lee (1971). 
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I V .  ATTENUATION AND SCATTERING 

Attenuation of a propagating wave represents  l o s s  o f  energy, i n  

cont ras t  t o  d ispers ion  i n  which the  wave energy is conserved but  

r ed i s t r ibu ted  i n  a deformed stress pulse .  Loss o f  energy during 

dynamic motion i n  composites can be a t t r i b u t e d  t o  a t  least  fou r  

phenomena; i )  v i s c o e l a s t i c  o r  a n e l a s t i c  effects o f  the  cons t i t uen t s ,  

i i )  wave s c a t t e r i n g ,  i i i )  microfracture ,  i v )  f r i c t i o n  between poorly 

bonded cons t i t uen t s .  

been the  concept of  constrained l a y e r  damping of  beams and p l a t e s  (see 

e.g.  Kerwin (1959), Yan (1972). In t h i s  appl ica t ion  a th ree  l a y e r  

laminate has a h ighly  v i s c o e l a s t i c  l aye r  constrained by two s t i f f e r  

e l a s t i c  layers .  A continuum theory f o r  a v i s c o e l a s t i c  laminated 

composite has been given by Grot and Achenbach (1970), Biot (1972), as 

well  as Bedford and Stern  (1971) using a continuum mixture theory.  The 

former work does not t reat  waves, whereas Bedford and Stern  ca l cu la t e  

the  a t tenuat ion  coe f f i c i en t  i n  terms of t h e  v i s c o e l a s t i c  p rope r t i e s  f o r  

a wave t r a v e l i n g  along the  l aye r s .  

One important use of v i s c o e l a s t i c  damping has 

A s  i n  acous t ics ,  t h e  effect  of inhomogeneities i n  a s o l i d  is  t o  

s c a t t e r  energy out  o f  an inc ident  wave. If the re  i s  some order  t o  t h e  

inhomogeneities e .g .  a pe r iod ic  a r r ay  of f i b e r s  o r  p a r t i c l e s ,  t h i s  

s c a t t e r e d  energy can be r e sca t t e red  back i n t o  t h e  wave ( i . e .  dispers ion)  

o r  r e f l e c t e d  back t o  t h e  wave source.  To t h e  ex ten t  t h a t  t he  inhomo- 

genei ty  is random, e las t ic  energy w i l l  be  s c a t t e r e d  out of  t h e  incident  

wave thus a t tenuat ing  t h e  pulse .  Thus a mixture of e l a s t i c  s o l i d s  can 

appear i n  i ts  averaged p rope r t i e s  t o  be i n e l a s t i c .  Krumhansl (1972) has 
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some general  remarks on t 

theory of  c r y s t a l  la t t ices .  

randomly heterogeneous e las t ic  medium with a plane harmonic wave 

incident  on it. 

67) Knopoff and H 

A t  low frequencies the  sca t t e red  energy shows the  

familiar Rayleigh dependence on frequency i . e .  w2 . 
constructed a model f o r  t he  s c a t t e r i n g  of waves propagating normal 

t o  the f i b e r s ,  when both f i b e r  and matrix are elastic,  and ind ica tes  

the  poss ib le  exis tence of d i s s ipa t ion  i n  the  composite under dynamic 

Mok (1969) has 

loadings.  Recently Christensen (1972) and WcCoy (1972) have examined 

a t tenuat ion  due t o  s c a t t e r i n g  and d isorder  i n  composites. 

Chow and Hermans (1971) have examined the  i n t e n s i t y  of  s ca t t e r ed  

waves i n  a composite by considering the  densi ty  and e las t ic  constants 

t o  be random var iab les  independent of an ax ia l  coordinate.  The authors 

calcuate  the  s c a t t e r i n g  cross sec t ion  (which is a measure of t he  energy 

of  t he  sca t t e red  fie1d)and f i n d  the  cross-section proport ional  t o  

(two dimensional Rayleigh s c a t t e r i n g  ) .  Theoretical  d a t a  on the  cross-  

sec t ion  f o r  longi tudinal  and shear waves propagating i n  a g lass  f ibe r -  

epoxy matrix composite are presented. 

w2 

Moon and Mow (1970) presented a theo re t i ca l  model f o r  a t tenuat ion  

i n  d i l u t e  p a r t i c u l a t e  composites using the  dynamics of  a s ing le  p a r t i c l e  

i n  an e las t ic  medium. When the  inhomogeneities are d i l u t e  (volume 

f r ac t ion ,  Vf < . l o )  and random, a f i rs t  approximation t o  t he  calcu- 

l a t i o n  of s ca t t e r ed  energy can o f t en  be obtained from the  mechanics 

of a s ing le  s c a t t e r e r ,  (The d i f f r a c t i o n  of e las t ic  waves by s ing le  

s c a t t e r e r s  has b 1971)). When the  densi ty  

of a r i g i d  inclusion p , embedded i n  an e l a s t i c  matr ix ,  is  g rea t e r  
2 
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t h e  equation of t r ans -  P > than t h a t  of  the  matrix,  i . e .  

l a t i o n a l  motion o f  the  sphere U can be found t o  be 
2 

(U-U) = 0 (31) 9 ~ 1  ( z K 3  + 1) 9P 1 [s - %j + 
( 2 K 2  + 1) 

+ -  
T 

d2 U 
P -  

d t2  ( 2 K 3  + 112 
0 

where u ,  i s  the  average motion o f  t h e  matrix without t h e  inc lus ion  

K, is  the  r a t i o  of  d i l a t a t i o n a l  t o  shear  speed i n  the  

mart ix ,  cL’cs 
T = a/CL 

0 

a ,  radius  o f  t h e  sphere 

The form of t h i s  equation suggests a mixture theory i n  which the  

e l a s t i c  energy depends on ( U - U ) ~ ,  and a d i s s ipa t ion  funct ion pro- 

por t iona l  t o  ( U - U ) ~  . The dependence on the  ve loc i ty  U accounts 
. .  

f o r  t he  r ad ia t ion  of e l a s t i c  energy when the  p a r t i c l e  v ib ra t e s  i n  the  

matrix.  The dependence on the matr ix  ve loc i ty  fi accounts f o r  

s c a t t e r e d  waves i f  t he  p a r t i c l e  were motionless.  The r e s u l t i n g  

f ’  equations f o r  t he  p a r t i c u l a t e  composite, of volume f r a c t i o n  V 

were found t o  be 

a 2~ - y -  a2u  = P2vf - a 2u 

1 a t 2  a 2 2  a t 2  
P (1 - Vf) - 
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where 

2p T (2K2 + 
2 0  2 0  

If the  damping were neglected the  medium would exhib i t  a natura.1 

frequency of Q (e.g. p /p = 10, K = 2, a = 1 0 - ~ m ,  cL = 4 103m/sec., 

R /27r % 2 l o 6  HZ) . 
pulse (wavelength A >> a ,  and i n i t i a l  i n t e n s i t y  1 , a t  Z = 0 ,  

0 2 1  

For N p a r t i c l e s  per  un i t  volume, a s ine  wave 
0 

0 

proport ional  t o  (au/az)2) ,  w i l l  decay as 

-N z I = I e  

where 

The s c a t t e r i n g  cross-sect ion y follows the  well  known Rayleigh 

behavior at low frequencies.  

While t h i s  model is c l e a r l y  l imited i n  appl icat ion by the  

assumptions made, it serves t o  make a simple connection between 

a t tenuat ion  i n  a composite mixture of e l a s t i c  so l id s  and t h e  mechanics 
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of  the  ind iv idua l  cons t i t uen t s .  Further work on a t tenuat ion  i n  

composites i s  needed. 

Mow t o  d i l u t e  f i b e r  composites could be made using t h e  work of  Mow 

and Pa0 (1971) on the  dynamics of  a cy l ind r i ca l  inc lus ion  i n  an 

e las t ic  matrix.  

should be taken i n t o  account as was done by Mok,and Chow and 

Hermans. In  a recent  paper Sve (1973) constructs  an equivalent 

v i s c o e l a s t i c  model from t h e  s c a t t e r i n g  of waves by c a v i t i e s  i n  a 

porous laminated composite. 

The extension of t h e  model of  Moon and 

For  volume f r ac t ions  above lO%,multiple s c a t t e r i n g  

The above model f o r  s c a t t e r i n g  of waves is  based on the  

i n t e r a c t i o n  of harmonic waves of wavelengths long compared with 

the  s i ze  o f  t he  scat terer .  

type have been summarized by Mow and Pao (1971). 

encounters a stress wave with a very short  rise distance,  a wave 

f ron t  ana lys i s  based on ray  theory may be more e f f i c i e n t .  This 

method has been employed by Achenbach e t  a l .  (1968), (1970) and 

by Ting and Lee (1969). 

t he  stress t o  rise from zero t o  a given value,  i n  t h e  d is tance  of 

a f i b e r  diameter (< .005 inch o r  .1 mm) i s  o f  t h e  order  - sec. 

Such waves only occur i n  shock waves o r  i n  u l t r a s o n i c  pulses  of  

The analyses of  problems of t h i s  

When t h e  scatterer 

One should keep i n  mind t h a t  t h e  time f o r  

frequency g r e a t e r  than 10 HZ. 
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V .  SHOCK WAVES 

The previous discussion has assumed t h a t  t he  deformation i n  

t h e  propagating waves was small and t h a t  t he  material behaved i n  

a l i n e a r  e l a s t i c  manner. Nonlinear e l a s t i c  wave analyses i n  com- 

pos i t e s  are few, as e .g .  t h a t  of Ben-Amoz (1971) who s tudied  f i n i t e  

amplitude waves i n  a f i b e r  composite f o r  waves along the  f i b e r s .  

Nor has much work been published t o  date  on p l a s t i c  waves i n  composites. 

Wlodarczyk (1971) has examined shock waves i n  p l a s t i c  layered media 

with l i n e a r  unloading behavior.  

e l a s t i c - p l a s t i c  solid’has been discussed by Johnson (1972) but  was 

not applied t o  composites. 

Calculat ion of plane waves i n  an iso t ropic  

Shock waves i n  composites, however, have received a g rea t  

deal o f  a t t en t ion .  In t h i s  class of wave phenomena, t he  pressures 

i n  the s o l i d  a re  assumed t o  be SO high , tha t  t he  mater ia l  can be 

t r e a t e d  as a hydrodynamic f l u i d .  

dev ia to r i c  s t r e s s e s  a r e  assumed t o  be small compared with t h e  mean 

s t r e s s  o r  pressure.  

y i e l d  o r  e las t ic  l i m i t  s t r e s s .  

This means t h a t  t h e  shear  o r  

This occurs f o r  pressures  much g rea t e r  than the  

A plane shock wave i s  defined as a t h i n  p lanar  region pro- 

pagating r e l a t i v e  t o  the  ma te r i a l ,  across which the  ve loc i ty  has a 

d iscont inui ty .  When t h e  medium is  homogeneous, cont inui ty  and 

momentum conditions across the  shock sur face  y i e l d  the  following 

r e l a t ions  between t h e  densi ty  p ,  normal p a r t i c l e  ve loc i ty  v , shock 

speed U ,  and pressure P , 

II p(v-U)II = 0 

II pv(v-U)II = - IIPII 
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When the  conditions ahead of t h e  wave are such t h a t  P = 0 ,  v = 0 ,  

the conditions behind the  shock requi re  t h a t  
0 0 

P O  v 
1 

u2 = P / P  (1 - 
1 1 0  

In addi t ion one must prescr ibe  a cons t i t u t ive  r e l a t i o n  f o r  t he  

pressure and s a t i s f y  an energy balance across t h e  shock. 

Munson and Schuler (1970, 1971) have extended t h i s  analysis  t o  

laminated composites and mechanical mixtures. 

neglect  the thermodynamics and assume cons t i t u t ive  r e l a t i o n s  f o r  a l l  

n cons t i tuents  i n  t h e  composite, 

i n  a l l  t he  cons t i tuents  t o  be equal a t  any pos i t ion  

In t h e i r  model they 

Pn = Pn(pn) , and requi re  t h e  pressures  

x,  i . e .  

Pn(x) = P (x) f o r  a l l  n 
1 

Applying t h i s  theory t o  laminates f o r  waves t r a v e l l i n g  both along 

and normal t o  t he  l aye r s ,  Munson and Schuler (1970) conclude t h a t  t he  

shock speed is  independent of t he  d i r ec t ion  , under c e r t a i n  assunytions 

on t h e  s t r a i n  i n  each cons t i t uen t .  The shock speed obtained has the  

form 
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where a: is t h e  i n i t i a l  volume f r a c t i o n  of  t h e  nth cons t i tuent  

and p: t h e  i n i t i a l  dens i ty .  They a l s o  conclude t h a t  t h e  model 

i s  not  l imi ted  t o  laminates,  and can be  used f o r  any mechanical 

mixture.  

The p a r t i c l e  ve loc i ty  immediately behind t h e  shock is  assumed 

t o  be equal i n  a l l  l aye r s  and given by 

0 0  
anPn v = U ( l - c -  

1 "n 

Thus when the  cons t i t u t ive  r e l a t i o n s  f o r  each cons t i tuent  are known, 

the  shock ve loc i ty  can be found as a funct ion of t h e  p a r t i c l e  speed. 

This r e l a t i o n  i s  ca l l ed  a Hugoniot curve. 

t h i s  model t o  a mixture o f  AR 0 p a r t i c l e s  i n  an epoxy matrix and 

compared t h e i r  calcuat ions with experimental po in ts  (Figure 1 3 ) .  For 

t h i s  mixture t h e  compressibi l i ty  is shown t o  behave much l i k e  t h e  

s o f t e r  component. 

Munson and Schuler appl ied 

2 3  

Iden t i ca l  r e s u l t s  were obtained by Torvik (1970). Tsou and 

Chou (1970) used a similar model bu t  included t h e  thermodynamics i n  

the  ana lys i s .  

r e l a t i o n s  f o r  a multi-continuum. 

Measurements of shock waves and shock Hugoniot curves f o r  

Bedford (1971) has  reported a theory f o r  Hugoniot 

quartz-phenolic have been performed by I s b e l l  e t  a l .  (1967), Charest 

and J e n r e t t e  (1969) , and Munson e t  a l .  (1971). Studies i n  shock waves 

i n  aluminum -polymethyl methacrylate (PMMA) have been reported by 

Barker and Hollenbach (1970), and Schuler ( to  appear),  and Schuler 

and Walsh ( t o  appear).  Other references t o  the  study o f  shock waves i n  

composites include Gary and Kirsch (1971) and Holmes and Tsou (1972). 
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The independence of the  shock speed on the  d i r ec t ion  of pro- 

pagation i n  an e l a s t i c a l l y  an iso t ropic  composite can only hold 

a t  high pressures .  

ind ica ted  t h a t  such dependence on d i r ec t ion  has been observed f o r  

Munson and Schuler (pr iva te  communication) have 

some composite systems below pressures  of 6 k i loba r s .  

The construct ion of t h e o r e t i c a l  models i n  the region between 

e l a s t i c  wave theory and hydrodynamic shock model w i l l  present  a 

grea t  challenge t o  the  ana lys t .  
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VI. EXPERIMENTS 

The generation and measu 

materials has ,  i n  general ,  been base 

i n  applied science used t o  study waves i n  s o l i d s .  

the use of a i r  g m s ,  explosive charges, exploding f o i l  f l y e r  p l a t e s ,  

shock tubes and p i ezoe lec t r i c  u l t r a son ic  generators.  To measure the  

These involve 

stress waves , s t r a i n  gages, p i ezoe lec t r i c  c r y s t a l s ,  capacitance gages, 

op t i ca l  interferometer ,  holographic and pholoe las t ic  techniques a re  

used. Experimental work i n  t h i s  area,  while not as copious as the  

theo re t i ca l  e f f o r t s ,  has provided a steady stream of experimental 

da ta  with which t o  check the  mathematical models. For a va r i e ty  of 

mater ia l s ,  including f i b e r ,  laminate and woven f i b e r  composite, da ta  

has been reported on measured wave speeds, a t tenuat ion  and dispers ion 

of s t r e s s  pulses ,  shock wave behavior,  s t r e s s  wave induced f r ac tu re  

and impact. 

The experiments can be categorized by the  type o f  stress pulse 

used. 

time, h a l f  s ine  l i k e  pulses  induced by p ro jec t ib l e  impact, t o  shor t  

rise time waves induced by explosive f l y e r  p l a t e  impact. The Fourier 

content of these  pulses have a la rge  zero frequency component. 

sonic  o r  pulsed s ine  wave tests have a narrow spectrum centered about 

The monotonic compressional pulse has been used,from long rise 

Ultra- 

a p a r t i c u l a r  freque 

idea l ly  s u i t e d  t o  map the  dispers ion r e l a t i o n  d i rec t ly ,by  measuring 

la t te r  waves a re  t 

v e l o c i t i e s  of t he  pulses ,  whil notonic pulse method 

d se shape with 
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passage through t h e  material. 

One of t he  problems associated with using pulsed s i n e  waves is 

measuring a wave ve loc i ty .  

(see e.g.  Br i l l ou in ,  1960), t he  shape o r  envelope of t h e  pulsed s i n e  

wave t r a v e l s  a t  t h e  group ve loc i ty  of t h e  spectrum center  frequency and 

As has been pointed out i n  many t e x t s  

is  not  equal t o  t h e  phase ve loc i ty  v = w/k when dispers ion i s  

present .  The v e l o c i t i e s  a re  r e l a t e d  however 
P -- 

Bri l lou in  a l so  descr ibes  two o ther  v e l o c i t i e s ,  t h e  wave f r o n t  ve loc i ty  

and the  s igna l  ve loc i ty .  The l a t t e r  is associated with t h e  f i rs t  

a r r i v a l  of  s igna l s  with t h e  spectrum center  frequency. 

ve loc i ty  is  sometimes equal t o  the  group ve loc i ty  (Br i l lou in ,  1960). 

The message however is c l e a r ;  carefu l  de f in i t i on  and i n t e r p r e t a t i o n  

of u l t r a son ic  wave ve loc i ty  measurements a re  required i n  order  t o  

construct  t h e  dispers ion r e l a t i o n  w(k).  

The s i g n a l  

Abbott and Broutman (1966) demonstrated t h e  use o f  a 

monotonic pulse  t o  measure the  equivalent  e las t ic  constants  o f  steel/  

g lass  and "S" glass/epoxy composites. This method is v a l i d  as long 

as the  stress rise length and t o t a l  pulse  length a r e  la rge  compared 
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with t h e  s i z e  of t h e  f i b e r s ,  f i b e r  spacing and t h e  t ransverse s t r u c t u r a l  

dimensions of t h e  specimen (e.g. rod diameter o r  plate thickness) .  

Potapov (1966) used pulsed ultrasound t o  measure the  e l a s t i c  constants 

of f ibe rg la s s  p l a t e s .  He  concluded t h a t  or thot ropic  e l a s t i c i t y  gave 

a s u f f i c i e n t l y  accurate descr ip t ion  of t he  e las t ic  proper t ies  s o  de te r -  

mined by these tests.  Markham (1970) a l so  used pulsed ultrasound i n  

an u l t r a son ic  tank t o  measure t h e  e l a s t i c  constants of a carbon f i b e r  

epoxy resin composite. 

Tauchert and Moon (1970) used the  monotonic pulse method and 

compared t h e  r e s u l t s  with da ta  from resonance tests and s t a t i c  

moduli. 

epoxy and glass/epoxy were within 2% f o r  waves along the  f i b e r s .  

was found t h a t  t h e  wave a t tenuat ion  could be predicted from vibra t ion  

resonance t 'ests of t h e  mater ia l s .  Tauchert (1971a, 1971b) has used 

The dynamically and s t a t i c a l l y  determined moduli f o r  boron/ 

I t  

u l t r a son ic  waves t o  measure a l l  t h e  e l a s t i c  constants of a va r i e ty  

of composites. Tauchert (1972) has a l so  measured u l t r a son ic  a t tenuat ion 

i n  composites and observed increases  i n  damping due t o  i n i t i a l  t e n s i l e  

s t r e s s .  

Pot t inger  (1970) used a s i m i l a r  method i n  glass/epoxy and boron/ 

aluminum and found agreement between s t a t i c a l l y  and dynamically 

determined moduli t o  within 3% f o r  waves i n  bars  a t  various angles 

t o  the  f i b e r s .  Also N e v i l l ,  Sierakowski e t  a l .  

method on steel/epoxy bars  with waves along t h e  s t e e l  f i b e r  d i r ec t ion .  

The increase i n  wave speed with volume f r ac t ion  of s t e e l  checked very 

(1972) used the  same 

' c lose ly  the  r u l e  of mixtures (Figure14 ) .  The at tenuat ion was found 

t o  decrease with increase i n  s t e e l .  

r e f l e c t i o n  from a free end were found t o  propagate a t  a s l i g h t l y  

Tensi le  waves generated on 
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s tud ied  by Ross e t .  a l .  (1972). Other s t u d i e s  i n  which e 1 as t i c constants 

of  composite mat e r i  a1 s 

Tuong (1970) and Cost and Z i m m e r  (1970a). Elast ic  constants of f i l l e d  elastomers 

were determined using u l t r a son ic s  by Waterman (1966) and showed t h e  e f f e c t s  of 

temperature and percent f i l l e r  on the  p rope r t i e s  of the  two phase ma te r i a l s .  

Also White and Van Vlack (1970) have used an acous t ic  resonance technique t o  

determine the  p rope r t i e s  of open-pore polymer foams with higher-moduli i n f i l t r a t i n g  

mat r ices ,  

Using a gas dynamic shock (70 p s i )  t o  induce a s h o r t  use time pu l se ,  

Whi t t ie r  and Peck (1969) s tud ied  the  e f f e c t s  of d i spers ion  i n  graphi te  and 

boron re inforced  carbon phenolic composites with t h e  wave i n  the  f i b e r  

d i r ec t ions .  

wave f r o n t ,  overshoot, and o s c i l l a t i o n s  i n  t h e  s t r e s s  p l a t eau  region, which 

checked t h e  p red ic t ion  of Peck and Gurtman (1969). 

described i n  a paper by Cummerford and Whi t t ie r  (1970). 

Drumheller (1971a) performed a similar experiment on a laminated composite 

The t ransmi t ted  pulse  showed a smoothed pulse  r i s e  i n  p l ace  of t he  

This technique is 

Lundergan and 

of  steel  and epoxy. They used a f l y e r  p l a t e  technique t o  generate compressional 

re again observed. 
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In another work Lundergan and Drumheller (1971b) s tud ied  t h e  

impact of an obl iquely laminated composite of steel and polymethyl 

methacrylate (PMMA). 

responding t o  a quasi  longi tudina l  and a quasi  shear  pulse ,  t h e  

experiments showed a th ree  s t e p  s loping wave. 

t h a t  f u r t h e r  work is  needed t o  explain the  discrepancy. 

Although theory p red ic t s  a two s t e p  wave cor- 

The authors conclude 

e 

With somewhat d i f f e r e n t  motives Schuster and Reed (1969) used 

a f l y e r  p l a t e  technique t o  generate shock waves i n  a boron/aluminum 

composite a t  pressures  up t o  76 kbar and impact durat ion of less than 

0 . 2  micro sec.  The impact ve loc i ty  of t he  f l y e r  plates were increased u n t i l  

damage occurred. Increased f i b e r  crushing with impact ve loc i ty  was 

observed and t h e  spa l l i ng  ve loc i ty  was measured f o r  aluminum and two 

boron/aluminum composites. The s p a l l  ve loc i ty  f o r  t he  plasma sprayed, 

d i f fus ion  bonded composite showed a three  f o l d  increase i n  ve loc i ty  

over the  s p a l l  ve loc i ty  f o r  t h e  aluminum specimens, while t h e  plasma 

sprayed, brazed composite showed a s l i g h t  decrease i n  the  s p a l l  

ve loc i ty  compared with aluminum. This dramatic e f f e c t  i s  a t t r i b u t e d  

t o  the  two d i f f e r e n t  geometrical arrangements of t he  f i b e r s  produced 

during f ab r i ca t ion .  A s  shown i n  Figure 15b, i n  the  d i f fus ion  bonded 

specimens the  f i b e r s  a re  not touching and hence are able  t o  a t tenuate  

the  shock wave by mult iple  s c a t t e r i n g .  In t h e  brazed specimen (Figure 

15a) one can see t h a t  the  f i b e r s  a re  contacting i n  t h e  d i r ec t ion  of 

t he  wave. 

of an increase i n  a t tenuat ion ,  r e s u l t i n g  i n  a s p a l l  ve loc i ty  no 

Thus a boron path is  created through the  medium with less 

g rea t e r  than t h a t  f o r  aluminum. 

One may conclude from t h i s  experiment t h a t  t h e  f i b e r  geometry 

w i l l  be an increasingly important f a c t o r  i n  stress wave f a i l u r e  as 

the  stress r i s e  d is tance  o r  pulse length approaches the  f i b e r  
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dimensions. In the  experime 

and spacing are about 0.1 mm and 

i n  length i n  the  aluminum. 

Several important papers have examined t h e  d ispers ive  n o f  

composites d i r e c t l y  with t h e  use of u l t r a s o n i c  waves. 

(1968) , demonstrated a decrease i n  phase v e l  

as predic ted  by seGeral t h e o r i e s  (Peck and Gurtman, 1969) f o r  waves 

along the  f i b e r s  of  thorne l  and Boron reinforced carbon-phenolic composites. 

Asay e t  a l .  

t y  with f r e q  

The 

phase ve loc i ty  with frequency out t o  4 MHZ but a change i n  t h e  r e i n -  

forced specimens of Av/v % 0.20 a t  3 MHZ (Figure 16 ) .  

carbon-phenolic without t h e  f i b e r s  showed no change i n  

Tauchert and Guzelsu (1972) performed similar experiments on boron/ 

epoxy and examined a v a r i e t y  of wave normal-fiber o r i e n t a t i o n s , f o r  

both longi tudina l  and shear  waves. In addi t ion  t o  t h e  decrease i n  

group ve loc i ty  of longi tudina l  with frequency both across and along 

the  f i b e r s ,  shear  waves t r ave l ing  along t h e  f i b e r s  and polar ized  

normal t o  t h e  f i b e r s  showed a 25% increase  i n  group ve loc i ty  a t  about 

1 MHZ (Figure 17) .  The wavelength i n  epoxy at  t h i s  frequency i s  

about 2.6 mm compared with a f i b e r  diameter and spacing d is tance  o f  

about 0 .1  mm. 

(1968) i n  an e a r l y  t h e o r e t i c a l  model and by o the r  authors (e.g. Sun 

This behavior had been predic ted  by Achenbach and Herrmann 

e t  a l . ,  1968) n l a te r  works. ear waves p r  ga t ing  across  t h e  fibers 

showed a s l i g h t  decrease i n  group ve loc i ty  with frequency. 

e (1972) performed a similar u l t r a s o n i c  experi-  

s i n e  waves on tungsten 

They a l s o  claim t o  have observed a cu tof f  band i n  frequency as w e l l  as 
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t he  second branch of t h e  dispers ion r e l a t i o n  (opt ica l  branch) (Figure 18) .  

In addi t ion ,  a frequency s h i f t  i n  t ransmit ted pulse  lower than t h e  in -  

c ident  pulse  frequency w a s  observed by these  authors as t h e  frequency 

approached t h e  cutoff  region. This i s  a t t r i b u t e d  t o  the  f i l t e r i n g  of 

t he  higher  frequency components i n  the  pulse  lying i n  t h e  s top  bond of 

frequencies,  e f f ec t ive ly  s h i f t i n g  t h e  observed frequency o f  t h e  t r ans -  

mit ted pulse .  I t  should be noted t h a t  Sutherland and Lingle (1972) claim 

t o  have measured t h e  phase ve loc i ty  i n  t h e i r  r epor t .  

d e f i n i t i o n  o f  t h e  ve loc i ty  measurement i s  lacking and the  present 

author suspects t h a t  t he  da ta  represent  group v e l o c i t i e s .  

However prec ise  

Rowlands and Daniel (19 72) have used in te r fe rometr ic  holography 

t o  measure t h e  t ransverse displacement i n  v ibra t ing  laminated aniso- 

t r o p i c  p l a t e s ,  

dimensional waves i n  an iso t ropic  p l a t e s  due t o  t r ans i en t  impact loads.  

Dally, Link and Prabhakaran (1971) were able  t o  observe two 

This method may hold some promise f o r  observing two 

dimensional waves i n  or thot ropic  f i b e r  reinforced p l a t e s  using photo- 

e l a s t i c i t y .  This development was made possible  by t h e  development 

of or thot ropic-b i re f r ingent  mater ia ls  which were s u f f i c i e n t l y  t r ans -  

parent  f o r  photoe las t ic  analysis  (see Prabhakaran, 1970). In t h i s  

study the  authors examined both t h e  t r ans i en t  loading of a h a l f  plane 

with edge loading and t h e  f u l l  plane problem with a hole  loaded with 

an explosive charge of lead ozide,as shown i n  Figure 19. 

nature  of t h e  stress wave propagation is c l e a r  from the  f igu re  (moduli 

r a t i o  EL/ET % 3 . 0 ) .  A cusp-like f r inge  seen i n  Figure 19 might 

represent  t h e  e f f e c t s  of shear  wave anisotropy. 

The an iso t ropic  

By measuring t h e  



- 60 - 

wave sur face  of  t h e  ou te r  f r inge  t h e  authors  were ab le  t o  recons t ruc t  

t he  ve loc i ty  sur face  f o r  t h e  quas i  longi tudina l  wave of  t h e  p l a t e  

material. This ve loc i ty  was within 10% of  t h a t  determined from t h e  

s t a t i c  e f f e c t i v e  moduli of  t h e  p l a t e  material. 

Another pho toe la s t i c  s tudy of  stress waves is  repopted by 

Hunter (1970) , who used an explosive s t r i p  along t h e  specimen edge. 

Using a l t e r n a t i n g  l aye r s  of d i f f e r e n t  material, f r inge  pa t t e rns  

accompanying a plane wave i n  t h e  layered d i r ec t ion  were observed. 

Rose and Chow (1971) used a similar method t o  observe the  build-up 

of a s teady wave f r o n t  i n  a a l t e r n a t e l y  layered composite of  d i f f e ren t  

pho toe la s t i c  materials. 

Other experimental work on t h e  propagation of waves i n  composites 

includes Benson e t  a l .  (1970) , Berkowitz and Gurtman (1970) , Berkowitz 

and Cohen (1970), Lord (1972). Cohen and Berkowitz ( i n  press )  have 

s tudied  dynamic f r a c t u r e  i n  composites due t o  stress waves- 

Sierakowski e t .  a l .  (1970a, 1970b) have measured dynamic stress s t r a i n  
-1 r e l a t i o n s  f o r  var ious composites and s t r a i n  rates up t o  l o 3  sec 

Up t o  a 85% 

these  rates (Figure 20) .  

. 
increase  i n  u l t imate  f a i l u r e  stress was observed a t  
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VII. IMPACT PROBLEMS I N  COMPOSITES 

A. Introduct ion 

The study of impact of i s o t r o p i c  so l id s  has a la rge  l i t e r a t u r e ,  

p a r t  of which is documented i n  the  book by Goldsmith (1960). 

study of s imi l a r  problems f o r  composite s t ruc tu res  has received 

very l i t t l e  a t t en t ion  a t  t h i s  wr i t ing .  

include the  nonelas t ic  and nonlinear aspects  of t he  problem, s ince  

the  object  of such s tud ie s  usual ly  concerns t h e  pred ic t ion  o r  avoidance 

of f a i l u r e  due t o  impact. 

r a t e s  of s t r a i n  become important, and the  inhomogeneity and the 

anisotropy i n  composite mater ia ls  i n v i t e  a wider s e t  of f r ac tu re  o r  

f a i l u r e  modes. Impact f a i l u r e  modes i n  i so t rop ic  materials include 

indentat ion,  spa l l i ng ,  and penetrat ion of t h e  p r o j e c t i l e  through t h e  

s t ruc tu re .  

pu l lou t ,  s p l i t t i n g ,  and delamination (see Figure 21). 

damage, micro f a i l u r e  i n  the  composite could Droduce a loca l  stress 

r i s e r  , change the  na tu ra l  frequencies , and decrease the  fa t igue  l i f e .  

The 

To be real is t ic ,  one should 

Also t h e  mater ia l  p roner t ies  under high 

'In composites one must add t o  t h i s  l ist  f i b e r  crushing,f iber  

Even with no v i s i b l e  

Both empirical  and ana ly t i c  s tud ie s  have been made but r a r e l y  

a re  theory and experiment in tegra ted .  Much of t h i s  work has been 

motivated by the  need f o r  b i r d  and ha i l s tone  impact pro tec t ion  of 

j e t  engine composite fan blades.  

conducted a t  great  cos t ,  have produced r e s u l t s  i n  t h e  form of leading 

edge pro tec t ion  schemes and in te r leaving  steel wire mesh between the  

p lys ,  (Anon, 1971), while ana ly t i ca l  s tud ie s  have only begun t o  explore 

the  problem (e.g. Moon, 1972). 

Empirical s tud ie s  of t h i s  problem, 
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One of t h e  f irst  areas o f  i n t e r e s t  i n  b i r d  imnact problems was t h e  

design o f  a i rcraf t  t ransparent  s t r u c t u r e s  such as windows and wind sh ie lds  

t o  resist b i r d  s t r i k e s .  One such discussion is  given by McNaughton (1964). 

A summary of  tes ts  i n  t h i s  a r t i c l e  on vinyl  sandwich panels reveals  t h a t  

the  pene t ra t ion  ve loc i ty  V,  

wind screens decreased as the  cube roo t  of  the  mass of t he  b i r d  M;  

f o r  a given set  o f  s t r u c t u r a l  conditions 

of  one t o  e igh t  pound b i r d s  on a i rcraf t  

!W3 = constant .  

Research r e l a t e d  t o  b i r d  damage i n  a i rc raf t  engines has been reported 

by Allock and Col l in  (1968). Impact by chicken carcases, wax, wood and 

ge la t ine  dummies have been inves t iga ted  f o r  t a r g e t  shapes resembling b a s i c  

geometries. The authors constructed a momentum t r a n s f e r  model f o r  t he  

average impact force F due t o  a spher ica l  impactor 

MV sin20 
A t  F =  

where M i s  b i r d  mass, V b i r d  ve loc i ty ,  8 angle o f  de f l ec t ion  from 

l i n e  o f  f l i g h t ,  

diameter t o  ve loc i ty .  In  terms o f  b i r d  dens i ty  p 

A t  t he  durat ion of impact given by r a t i o  of  p r o j e c t i l e  

Measurements showed t h a t  t h e  assumed impact time was too  long and t h e  

t h e o r e t i c a l  force  too  low. 

round nose t a r g e t s  e las t ica l lymounted  showed t h a t  t h e  t a r g e t  de f l ec t ion  

was proport ional  t o  t h e  b i r d  momentum. 

Deflections of  t h e  f l a t  p l a t e  kn i f e  edge and 
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Research on h a i l  impact damage t o  t y p i c a l  aircraft s t r u c t u r e s  

has been presented by Hayduk (1973). 

mental and an ana ly t i ca l  model €or denting type h a i l  damage i n  

aluminum fuselage panels o r  dome segments (spherical  cap). 

Comparison i s  made of  experi-  

The range of s t r u c t u r a l  impact problems includes o the r  phenomena 

besides  b i r d  and ha i l s tone  impacts. These include micrometeorite 

damage on spacecraf t ,  dus t ,  sand and r a i n  erosion,  and cav i t a t ion  

erosion of s o l i d s  which involves dynamic stresses due t o  col lapsing 

bubbles. A discussion of impact erosion by dust p a r t i c l e s  f o r  metal 

sur faces  is  given by Smeltzer e t .  a l .  (1970). The mechanics of a 

l i q u i d  drop impact with a s o l i d  surface has been given by Heyman (1969) 

and Peterson (1972). Rain erosion o f  composites is reported by Schmitt 

(1970). B a l l i s t i c  problems of high ve loc i ty  penetrat ions of p l a s t i c -  

aluminum laminates by steel  p r o j e c t i l e s  have been analyzed by Kreyenhagen 

e t .  a l .  (1970) using numerical computer modes which i l l u s t r a t e  severa l  

damage modes. 

The t e s t i n g  of composite mater ia l s  under impact forces  encompasses 

a v a r i e t y  o f  load and specimen condi t ions.  

impact tests use r e l a t i v e l y  small beam-like specimens, ( l e s s  than 3 

inches long) under a t ransverse  poin t  force .  The durat ion of  t he  

impact is usual ly  long compared with the  time of  a s t r e s s  wave t o  

t r ave r se  the  specimen. For example, using a wave speed of v % 5mm/psec, 

a length L = SOmm, and pulse  time 

number 

during such tests.  

compressive stress pulses  of extremely shor t  durat ion,  (% 0.2 10-6sec) 

i n  t h i n  specimens (%2 nun th ick)  are used producing a nondimensional 

Classical Izod and Charpy 

T = 10-3sec, t he  nondimensional 

VT/L = l o 2  is a measure of t he  number o f  r e f l e c t i o n s  occurring 

In shock wave impact t e s t i n g  of composites, high 

number, (using t h e  same wave speed as above), V T / L  % .5 . Also the  NASA 
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and t h e  A i r  Force i n  t h e  United S ta tes  a re  sponsoring b a l l i s t i c  impact 

tests on composite p l a t e s ,  as well  as f u l l  s i z e  j e t  engine fan blades,  

using ha i l s tones  and l i q u i d  objects  t o  simulate b i r d  impact. 

Almond e t  a l .  (1969) have reviewed t h e  l i t e r a t u r e  on c l a s s i ca l  

impact t e s t i n g  on laminated composites. Embury e t  a l .  (1967) conducted 

Charpy V-notch tests on s o f t  so lder  laminated s t e e l  specimens both 

with the  impact force normal t o  t h e  laminated surface (crack a r r e s t e r  

configuration) and p a r a l l e l  t o  t h e  laminate surfaces  (crack d iv ide r  

configurat ion) .  In the  l a t t e r  case t h e  d u c t i l e - b r i t t l e  t r a n s i t i o n  

temperature was reduced and t h e  specimens showed higher  impact energy 

absorption over homogeneous s t e e l  specimens. 

Also Chamis e t  a l .  (1971) have performed miniature-Izod impact 

t e s t s  

r e s i n  matrix (specimen s ize  7.9x7.9x37.6 mm). The t e s t s  included 

on f i b e r  composites of glass  and graphi te  f i b e r s  i n  an epoxy 

specimens with the  f i b e r s  e i t h e r  p a r a l l e l  o r  t ransverse t o  t h e  cant i lever  

longi tudinal  ax is .  The t e s t s  show f a i l u r e  modes of cleavage, cleavage 

with f i b e r  pu l lout ,  and cleavage with delamination. In t h e  t ransverse 

mode t h e  cleavage included matrix f r ac tu re  , f i b e r  debonding and 

f i b e r  s p l i t t i n g .  

by these authors t o  be cor re la ted  with the  intralaminar  shear  s t rength  

The t ransverse  impact s t rength was found 

of the  various composites t e s t e d .  

In s i m i l a r  work, Novak and DeCrescente (1972) repor t  t h e  r e s u l t s  

of  Charpy impact t e s t s  f o r  un id i rec t iona l  graphi te ,  boron, and g l a s s  

f i b e r s  i n  a r e s i n  matrix.  They conclude t h a t  t h e  toughness of t he  

r e s i n  matrix i s  not an important f a c t o r  i n  impact energy absorption. 

"S  glass" composites showed a higher  impact s t rength  than boron/resin 



- 65 - 

and graphi te / res in  composites. 

mechanisms such as fi lament pu l lou t ,  shear  delamination, ect .  

conclude t h a t  t he  impact s t rength  is cor re la ted  w i  

They a l so  evaluate  t h e  energy-absorption 

They 

f i b e r  s t r e s s - s t r a i n  curve. 

In  a recent  paper Peck (1972) has reviewed t h e  l i terature  on 

s p a l l  f r ac tu re  i n  composites using one dimensional shock waves. In 

addi t ion t o  the  work of Schuster and Reed (1969) on f i b e r  composi 

discussed above, Warnica and Charest (1967) have used 

/? 

1-2 vsec compres- 

s ion pulses on laminated quartz  phenolic t o  determine s p a l l  s t r e s s  

thresholds .  Similar  work by Cohen and Berkowitz (1972) , and Barbee 

e t  a l .  (1970) a re  a l so  discussed. 

I t  i s  useful  t o  compare t h e  merits of these d i f f e r e n t  tests.  

s p a l l  tests and dynamic s t r e s s - s t r a i n  t e s t s  (e.g. Sierakowski, e t  a l . ,  

1971) the  stress waves a re  one dimensional. Thus, c l e a r l y  defined 

s t r e s s  states are  used t o  measure t h e  mater ia l  s t rength  proper t ies .  

However, i n  foreign objec t  damage, t h e  conditions of impact f a i l u r e  

involve the  contact o f  b lunt  ob jec ts  with a sur face ,  thus producing 

a complicated stress s t a t e .  Izod and Charpy t e s t s  appear t o  simulate 

ac tua l  impact, s ince a knife  edge on a pendulum encounters a beam- 

l i k e  specimen. S i m i l a r l y , b a l l i s t i c  t e s t s  involve a loca l ly  inhomogeneous 

stress state i n  the  region of p r o j e c t i l e  contact which is found i n  

ac tua l  impact problems. 

In 

However, t h e  ad hoc nature  of these s t r e s s  

states does not  allow comparison with o the r  t e s t s .  Thus Izod and 

Charpy r a t i n g s  of ten  cannot be compared. Also, because of t h e  small 

s ize  of t h e  specimens and the  long contact time (e.g. . ~ 1 0 - ~ s e c )  many 

r e f l ec t ions  occur du t h e  impact thus obscuring the  wave l i k e  

nature  of impact, which might be present  i n  a lar  specimen o r  

i n  the  actual s t r u c t u r e .  In b a l l i s t i c  tests,  however, contact times 

of 5 l o m 5  s e c  o r  less a re  obtained f o r  high ve loc i ty  p r o j e c t i l e s  of t h e  
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order of one inch diameter. 

of a p l a t e  would r e s u l t  i n  the  t o t a l  energy of impact contained i n  

a c i r c l e  of radius l e s s  than 30 cm. 

s t ruc tu re  fewer r e f l ec t ions  might ob ta in  than f o r  a small t e s t  

specimen. I t  i s  the  opinion o f  t h i s  w r i t e r  t h a t  s ca l e  e f f e c t s  are 

For a wave speed of 6 mm/Msec the  impact 

I f  t h e  p l a t e  is p a r t  of a la rge  

of importance i n  impact t e s t s .  

l a t ed  t o  l a rge r  s t ruc tu res  t h e  nondimensional numbers 

Thus i f  tes t  da ta  is t o  be extrapo- 

where T is t h e  contact time, v a wave speed, and L a repre-  

sen ta t ive  length should be matched i n  addi t ion t o  o ther  va r i ab le s .  

B.  Analytical  Models f o r  Impact 

The t o t a l  problem descr ip t ion  involves the  loca l  deformation 

a t  the impact s i t e  and t h e  simultaneous determination of t h e  motion 

of the  s t r u c t u r e  during and a f t e r  impact. 

of the s t r u c t u r e  takes  place over a time period much l a rge r  than t h e  

impact contact time, and t h e  s i z e  of t he  impactor i s  much smaller  

than the  s t r u c t u r a l  dimensions, t he  problem may be s p l i t  i n t o  two 

d i s t i n c t  p a r t s .  

h a l f  space, 11) The response o f  t he  s t ruc tu re  t o  a prescr ibed loca l  

impact force  as determined i n  Par t  I .  The e r r o r s  involved i n  such 

a scheme appear t o  be on t h e  conservative s ide  s ince  t h e  procedure 

w i l l  underestimate t h e  contact time and overestimate t h e  contact force 

When the  overa l l  motion 

I )  The loca l  mechanics of impact with a deformable 
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(Goldsmith, 1960). 

Discussed i n  the  next s ec t ion  i s  the  impact o f  s o l i d  objec ts  on 

s o l i d  sur faces .  As already mentioned l i q u i d  o r  r a i n  drop impact 

erosion is  a l s o  an important problem. 

v e l o c i t i e s ,  s o l i d s  may be  t r e a t e d  by a hydrodynamic model and,,liquid 

drop model may be use fu l .  

1. 

For s u f f i c i e n t l y  high impact 
a 

Impact of a Half Space-Hertz Theory 

The problem of an impulsive l i n e  force on an an iso t ropic  ha l f  

space has been given by Kraut (1963) f o r  a t ransverse ly  e l a s t i c  

i s o t r o p i c  material. In  p a r t i c u l a r ,  a l i n e  source on the  surface 

normal t o  the  symmetry ax i s  produces two wave sur faces  as shown 

i n  Figure 22 corresponding t o  the  wave surfaces ,discussed i n  an 

e a r l i e r  s ec t ion .  

another e l a s t i c  body has not been given t o  da te .  The waves generated 

during a point  impact on an i s o t r o p i c  h a l f  space have been s tudied  by 

Pekeris (1955) where it was shown t h a t  on the  surface la rge  s t r e s s e s  

propagate a t  the  Rayleigh sur face  wave speed. 

an e l a s t i c  sphere h i t t i n g  an e las t ic  h a l f  space a re  not  known. 

The extension of t h i s  work t o  dynamical contact with 

But t he  dynamics o f  

Thus without even considering a n e l a s t i c  e f f e c t s ,  t he  ana ly t i c  l i t e r a t u r e  

on dynamic impact i s  l imi ted  even f o r  i so t rop ic  materials. Instead,  

what has been used is  a q u a s i - s t a t i c  t h e o r e t i c a l  model ca l l ed  t h e  Hertz theory 

(Goldsmith, 1960). This i s  based on the s ta t ic  deformation produced by 

a poin t  force on a sur face .  When the  force ,  F , i s  between 

a sphere o f  radius  R ,  and a h a l f  space,  F 
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is  r e l a t e d  t o  t h e  r e l a t i v e  approach of sphere and h a l f  space,  c1 , by 

r 1.140 MVg 
F =  s i n  1.068 V o t  t 2 -r 

01 m 

F =  0 , t 7 - r  

i 

3 / 2  
F = K ~  

where 

( 3 5 )  

(v  i s  Poisson's r a t i o ,  and E is  Young's modulus). 

This r e l a t i o n  i s  nonl inear  s ince  the  contact  a r ea  na2 depends 

on the  force .  

Equating t h i s  force t o  t h e  change o f  momentum o f  a sphere during 

impact with i n i t i a l  ve loc i ty  

pressions f o r  t he  contact  time and force h i s t o r y ,  

Vo , t h i s  theory gives t h e  following ex- 

2 .  94am 
a =  

vO 

(36) 

137) 
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where c1 i s  t h e  maximum approach, and M i s  the  mass of t h e  sphere.  m 
Extension of  t h e  Hertz theory of impact t o  an iso t ropic  bodies has 

been made by Chen (1969) and Willis (1966). The contact region has been 

shown by Willis t o  be e l l i p t i c  f o r  an an iso t ropic  h a l f  space i n  cont ras t  

t o  a c i r c l e  f o r  t he  i s o t r o p i c  case.  

r e l a t i o n  similar t o  Eq. (35), where K depends i n  a complicated way on t h e  

e l a s t i c  constants .  

done numerically and no examples have been given t o  date  f o r  t yp ica l  

composite anisotropy.  

However he obtains  a force def lec t ion  

The determination of the  e l l i p s e  parameters must be 

A simple model f o r  es t imat ing the  contact  time f o r  i s o t r o p i c  spheres 

on composites has been suggested by the  author Moon (1972d), which assumes 

a c i r c u l a r  contact  a r ea .  

on unid i rec t iona l  f i b e r  composite p l a t e s  , with the  f i b e r s  p a r a l l e l  t o  

the sur face ,  show t h e  contact  area t o  be e l l i p i c a l  with t h e  la rge  axis  

normal t o  the  f i b e r s ,  bu t  only s l i g h t l y  deviat ing from a c i r c l e .  

Experiments on the  contact of a s t e e l  sphere 

Thus i n  Eq .  (35 t he  ha l f  space constants (1 - v2)/E a re  replaced by a 

t ransverse  e l a s t i c  constant f o r  t h e  composite. &en* has suggested 

using the  compliance S where the  "3" axis  is  normal t o  the  

sur face .  The author has used 1 / C  t o  replace (1 - v2)/E i n  

Figure 2 3  t o  es t imate  the  contact  time f o r  ha i l s tones  and g ran i t e  

spheres on 55% graphi te  f i b e r  i n  epoxy. For impact speeds i n  the  

range 100-500 m/sec t h e  contact  times range from 15-85 usec.  

33  

3 3  

In summary these  formulae revea l  the  following dependence of contact 

time and peak pressure on impact ve loc i ty  

* 
Pr iva te  communication 
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Such r e s u l t s ,  however, should only be used as guidel ines ,  s ince  t h e  

theory uses assumptions which break down a t  high v e l o c i t i e s .  Goldsmith 

(1960) has made the  following summary of t he  l i e r t z  theory of contact .  

1) A t  high v e l o c i t i e s  t h e  H e r t z  contact  time is  a lower bound on the  

contact  time. 

2) When a sphere s t r i k e s  a beam, t h e  motion of  t h e  beam decreases the  

force ,  bu t  t h e  contact  time remains about t h e  same. 

In another reference Goldsmith and Lyman (1960) have shown t h e  Hertz 

theory t o  be remarkably v a l i d  in so fa r  as contact time and peak force  

f o r  the  impact of hard s t e e l  spheres 

s t e e l  sur face  f o r  v e l o c i t i e s  up t o  300 f t / sec  ( ~ 9 1 . 5  m/sec) . The da ta  

i n  Figure 2 3  for  graphi te  epoxy can only be used as a rough guide f o r  

contact  times, u n t i l  experimental d a t a  becomes ava i lab le .  

2 .  Non Hertzian Impact 

(1/2 inch diameter) onto a hard 

3 / 2  The H e r t z  theory of impact rests on the  contact  law F = ~a 

For boron/aluminum and graphi te  fiber/epoxy composite p l a t e s  t h i s  force  

law was t e s t e d  under 1/4 inch and 3/8 inch s t e e l  b a l l s  i n  a s t a t i c  

t e s t i n g  machine. The preliminary r e s u l t s  i n  Figures 24925 show clearly 

t h a t  a more general  l a w  i s  required and t h a t  f o r  moderate forces  ( l e s s  

than 100 l b f )  t h e  deformation is  i n e l a s t i c ,  requi r ing  a d i f f e r e n t  law 

f o r  approach and rebound. 

A more general  contact law was given by Meyer (see Goldsmith, 1960) 
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If such a l a w  holds f o r  both approach and rebound, formulas similar 

t o  the  H e r t z  theory can be obtained,  (see Goldsmith, 1960, p .  91) .  

Clear ly  the  s ta te  o f  knowledge about t he  impact of  composite o r  

inhomogeneous bodies  i s  unsa t i s f ac to ry .  

good q u a s i - s t a t i c  theory which can account f o r  a n e l a s t i c  effects ,  a 

t r u l y  dynamical impact model f o r  composites i s  needed. 

In addi t ion  t o  the  lack of a 

For i s o t r o p i c  mater ia l s  computer codes employing f i n i t e  d i f -  

ference methods have been developed f o r  dynamical impact and penet ra t ion  

p r o j e c t i l e s  and deformable bodies , (e.  g. Wilkins , 1969, Kreyenhagen e t .  a l .  1970) . 
These models apply a n e l a s t i c  cons t i t u t ive  equations and can p red ic t  

permanent deformation. 

no doubt be ava i l ab le  i n  the  near  fu tu re  as w e l l  as codes based on f i n i t e  

element methods. H wever t h e r e  i s  a need f o r  ana ly t i ca l  so lu t ion  f o r  

impact phenomena; f i r s t  f o r  t h e i r  s impl i c i ty  and a c c e s s i b i l i t y  t o  the  

designer ,  and second t o  check the  computer codes which w i l l  c e r t a in ly  

appear i n  the  near  f u t u r e .  

The extension of these  codes t o  composites w i l l  

In  developing a n a l y t i c a l  models f o r  impact, t h e  use of  an equi- 

va len t  an i so t rop ic  mater ia l  i s  quest ionable  i f  one des i res  t o  explain 

stresses i n  t h e  contact  region.  When a composite material i s  indented 

by another body of  convex sur face  the  a rea  of contact goes t o  zero as 

the  contact pressure  decreases.  Thus f o r  small forces  t h i s  a rea  i s  

necessa r i ly  o f  t h e  order  of  t h e  dimensions of  t h e  f i b e r s  o r  lamina. 

One would expect a force-def lec t ion  l a w  t o  exh ib i t  pe r iod ic  changes 

i n  s lope  as t h e  contact  area engages each successive f i b e r  (Figure 25) .  
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This i s  t h e  t e n t a t i v e  explanation f o r  t he  wav ss i n  t h e  experi-  

mental r e l a t i o n  shown i n  Figure 25 f o r  boron f i b e r s  

matrix.  The pe r iod ic  p l a t eau  appear t o  occur a t  de f l ec t ions  c 

responding t o  contact  r a d i i  d i f f e r i n g  by t h e  f i b e r  spacing (%.004 

inches) .  

C.  S t ruc tu ra l  Response t o  Impact 

1. The Coupled Problem 

Further  experimental work on t h i s  problem i s  needed. 

When the  impact force  and durat ion depend on t h e  s t r u c t u r a l  

motion the  above procedure cannot be used. The coupled response 

of an i s o t r o p i c  p l a t e  and a spher ica l  impactor was t e a t e d  by Eringen 

(1953) and o the r s ,  (see Goldsmith, 1960) . Conceptually t h e  extension 

t o  composite s t r u c t u r e s  is  similar. Let two coordinate systems be 

embedded i n  the  two bodies (see Figure 26) and le t  the  axes x , x '  
3 3  

be d i r ec t ed  i n t o  the  sur faces  of s t r u c t u r e  and impactor respec t ive ly .  

Relat ive t o  these coordinates w , w '  represent  sur face  de f l ec t ions ,  
3 3  

W , t he  de f l ec t ion  o f  t h e  p l a t e  o r  s h e l l  neu t r a l  surface, and W f  
3 3 

t h e  displacement of t h e  impactor center  of  mass. 

shapes of both s t r u c t u r e  and impactor are given by 

If t h e  sur face  

x = S(x ,x ), 
3 1 2  

x '=  S ' (x ' ,x ' )  
3 1 2  

then t h e  boundary condi t ion t o  be s a t i s f i e d  over 

the  contact  region i s  

on x3, x; = 0 

The def lec t ions  w w '  are determined from a th ree  dimensional 
3' 3 

ana lys i s ,  such as a Hertz ana lys i s ,  (as e .g .  Willis, 1966). The 
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displacement W 

theory,  while t h e  impactor displacement W' is governed by Newtons 

law f o r  t he  body under i n i t i a l  condi t ions 

i s  governed by a two dimensional p l a t e  o r  s h e l l  
3 

3 

5 W' = 0, - - - V , a t  t = O  
0 d t  3 

The so lu t ion  o f  such a problem f o r  a composite s t r u c t u r e  i s  not  

known t o  t h e  author ,  though the  problem seems f a i r l y  s t ra ightforward.  

2 .  Transient  Load Problems 

There has been, however, a number of s tud ie s  made of t he  response 

of  a composite body t o  sho r t  durat ion o r  impact-l ike forces .  Already 

mentioned i s  t h e  work of Peck and Gurtman (1969) on the  response of a 

laminated h a l f  space t o  a compressive stress on t h e  sur face  i n  t h e  

d i r ec t ion  of  t h e  layer ing.  Sve (1972) has a l so  t r e a t e d  t h e  laminated 

h a l f  space under impulsive hea t ing  of  t he  sur face ,  (e.g.  from a l a s e r ) ,  

with thermoelast ic  coupling. 

theory of Sun e t  a l .  (1968). In another work Sve and Whit t ier  (1970) 

have appl ied t h i s  theory t o  the  pressure  loading of an obliquely laminated 

h a l f  plane t o  determine t h e  e f f e c t s  o f  lamination angle and dispers ion 

on t h e  stresses. 

This work uses the  approximate continuum 

Voelker and Achenbach (1969) t r e a t e d  an i n f i n i t e  laminated body 

under a s t e p  body force  i n  a plane normal t o  t h e  layer ing using an exact  

modal ana lys i s .  The i n t e r f a c e  shear  stress wave shows a slow rise t o  

a s t a t i c  value,  while t he  normal i n t e r f a c e  stress is  found t o  be o s c i l l a t o r y .  

Also Sameh (1971) has used a d i s c r e t e  element model t o  ca l cu la t e  t h e  e las t ic -  

p l a s t i c  response of  a layered h a l f  space. 
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The one dimensional impact loading o f  a laminated p la te  has been 

discussed by Hutchinson (1969) where t h e  pressure is  normal t o  t h e  

layer ing .  

transmission coe f f i c i en t s  f o r  a stress pulse  when it encounters a 

d iscont inui ty .  For example, t h e  t ransmi t ted  stress across  a plane 

boundary separa t ing  two d i f f e r e n t  materials with normal stress 

inc ident  on t h e  sur face  i s  given by 

This problem can be solved exac t ly  using t h e  r e f l e c t i o n  and 

o = TO T = 2 Z Z / ( Z  + z )  
0 ’  1 2  1 2 

where 

(Note, t h a t  T i s  independent of t h e  d i r ec t ion  of t he  inc ident  stress). 

Thus a pressure d iscont inui ty  of i n t e n s i t y  p0 propagating normal t o  

a laminated medium of a l t e r n a t i n g  acous t ic  impedances suffers an a t t en -  

uat ion at  t h e  head of t h e  pulse  of 

Z1, Z 2  are t h e  acous t ic  impedances o f  t h e  two materials. 

a f t e r  encountering n p a i r s  of l aye r s .  Analysis using the  r e f l ec t ed  

and t ransmi t ted  waves i n  each l aye r  revea ls  t he  stress h i s t o r y  behind 

the wave f r o n t .  

3 .  Transient  Edge Loading o f  a Plate 

As noted ea r l i e r ,  when the  pulse  durat ion i s  long enough, d i spers ive  

effects can b e  neglected as a first approximation and an equivalent  aniso- 

t r o p i c  model can be used (Eqs. ( 7  ) ,  (12) ) .  One of t h e  effects  of  anisotrony 
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i s  revealed i n  t h e  one dimensional edge impact of  an o r tho t rop ic  

p l a t e  with t h e  impact force  i n  the  plane of t h e  p l a t e  and t h e  edge 

oblique t o  a symmetry ax i s  

s t r u c t u r a l  and material d i spers ion ,  w e  can use Eqs. ( 7 ) ,  with 

Neglecting 

t h e  boundary condi t ions on t h e  edge 

For an i s o t r o p i c  material a compressional wave would be generated.  

However, f o r  an edge oblique t o  the  symmetry a x i s ,  two waves are 

propagated i n t o  t h e  p l a t e  with wave speeds corresponding t o  those 

on the  ve loc i ty  sur face  with wave normal (cos$, s in$ ) .  Also d i s -  

placements normal and p a r a l l e l  t o  t h e  edge w i l l  be exc i t ed .  The 

displacements w i l l  t ake  the  form (xn normal t o  edge, x along 

the  edge) n 
un = u [cos+ - a s i n + ]  f ( t  - - 

S 

X 

1 1 V 
1 n 

+ u [cos$ - a s in$ ]  f ( t  - y 1 
2 2 n 

X 

L n 
S X 

U = U [sin$ + 01 COS$] f ( t  - - ) 
1 1 V 

1 n 
X 

+ u [s in$ + a cos$] f ( t  - 7 1 
2 

2 2 

The vectors  (1, a l )  and (1,  a ) are the  eigenvectors corresponding 

t o  v , v respec t ive ly  and depend on t h e  angle 4 .  
2 

1 2 

The quasi  shear  wave is generated through t h e  coupling o f  t h e  

normal stress t.” with t h e  shear  s t r a i n ,  e , i n  t h e  cons t i t u t ive  ns 
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n S n equations wr i t t en  i n  t h e  x - x coordinate system, i . e .  on x = 0 

The constants 

the  angle I$ , (see Ashton e t  a l .  1969). Determination o f  t h e  constants 

U , U r e s u l t  from s u b s t i t u t i o n  of  Eqs. (41) i n t o  these  boundary condi- 

t i ons  and is  l e f t  f o r  t h e  reader .  

A l l ,  A I 6 ,  e t c .  a r e  r e l a t e d  t o  the  e las t ic  constants  and 

1 2  

4 .  Impact Generated Flexural Waves 

Flexural waves generated by impact forces  t ransverse  t o  i s o t r o p i c  

p l a t e s  has been reviewed by Mikowitz (1960). The one dimensional l i n e  

impact of an iso t ropic  p l a t e  using both t h e  Mindlin Eqs. (12) and t h e  

classical  theory,  Eq. (15),  has r ecen t ly  been t r e a t e d  by Moon (1972d) 

In t h i s  work t h e  l i n e  force  is  t ransverse  t o  the  p la te  sur face  and 

oblique t o  t h e  composite symmetry axes. In the  context of t h e  Mindlin 

theory extensional  waves are generated by a t ransverse  force  as well as 

a f l exura l  wave. The importance o f  shear deformation and ro t a ry  

i n e r t i a ,  as r e f l e c t e d  i n  Mindlins theory,  i s  shown t o  become important 

when the  width of  t h e  contact  force  d i s t r i b u t i o n  is  comparable t o  t h e  

p l a t e  thickness .  

The ca l cu la t ion  o f  t h e  two dimensional stress wave response t o  

cen t r a l  impact forces  has r ecen t ly  been s tudied  by Chow (1971) and 
). 

Moon (1972b,c). Using a Timoshenko theory f o r  laminated o r tho t rop ic  p l a t e s  
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Chow (1971) t r e a t s  t h e  t r ans i en t  response of a rectangular  p l a t e  t o  normal 

impact. 

The author (Moon 1972b,c) uses a Mindlin p l a t e  model t o  examine the  stress 

contours a f t e r  impact i n  an i n f i n i t e  p l a t e .  

and f l exura l  waves a re  shown t o  be generated under t ransverse impact. 

Again,both extensional 

Solutions t o  t h e  equations which govern the  cen t r a l  impact of 

an iso t ropic  p l a t e s  were found f o r  impact-like pressures using an 

analytical/computational method. 

used was the  following 

The impact pressure d i s t r ibu t ion  

f o r  r < a ,  ( r 2  = x2 + x2) and t < T 
1 3 0 

The th ree  s t r e s s  measures chosen were the  average membrane stress 

(t + t ) / 2 ,  t h e  average f lexura l  stress ( t  + t ) / 2  a t  the surface 
11 33  11 33  

of t he  p l a t e ,  and t h e  maximum inter laminar  shear  s t r e s s  given by 

( t 2  + t 2  
21 2 3  

The s t r e s s e s  were calculated i n  a qua r t e r  plane of  t h e  p l a t e  f o r  a 

s p e c i f i c  time a f t e r  t he  i n i t i a t i o n  of inipact and were normalized with 

respect  t o  t h e  maximum impact pressure as calculated i n  the  above sec t ion .  

The da ta  i s  presented f o r  various times and lay-up angles i n  the  form 

of stress contour p l o t s  (Figures 27, 28). Superimposed on these curves 
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a r e  the theo re t i ca l  wave f ron t  f o r  t he  p a r t i c u l a r  wave i n  question 

and the  radius  of  t he  c i r c l e  which bounds the  impact pressure.  

The s i g n i f i c a n t  stress l eve l s  a l l  l i e  within t h e  sur face  bounded 

by t h e  theo re t i ca l  wave sur face .  In Figure 27, the  average o r  membrane 

mean stress contours 1 /2 ( t  + t ) f o r  graphi te  fiber/epoxy matrix 

laminate p l a t e s  are shown f o r  lay-up angles of  
1 1  33 

O o ,  k45'. 

The f l exura l  o r  bending motion has th ree  waves associated with 

i t .  The l a r g e s t  s t r e s s e s  however were found i n  t h e  lowest f l exura l  

wave which t r a v e l s  a t  an i s o t r o p i c  speed given by 

(K = lT2/12 , 

mean f l exura l  

Figure 28 f o r  

lay-up angles) 

is Mindlin's cor rec t ion  f a c t o r ) .  S t r e s s  contours f o r  t he  

stress 1 / 2 ( t -  - + t - -  ) i n  t h i s  wave a re  shown i n  
1 1  3 3  

graphi te  fiber/epoxy matrix 

under the  t ransverse  impact 

the  wave f r o n t  is c i r c u l a r  s ince  v is 

S t resses  i n  the  second and t h i r d  f l exura l  
3 

0 0 laminate p l a t e s  (+15 , 245 

pressure E q .  (42) .  Note t h a t  

i s o t r o p i c  f o r  laminate p l a t e s .  

waves were found t o  be small. 

A t h ree  dimensional computer p l o t  i s  shown i n  Figure 29 f o r  t he  f l exura l  

s t r e s s  f o r  t he  k45 lay-up angle composite p l a t e .  0 

The maximum stress l eve l s  were found t o  occur immediately after 

the  end of impact and appeared t o  propagate along the  f i b e r  d i r ec t ions ,  

given by the  lay-up angles .  

These r e s u l t s  show t h e  e f f e c t  of t he  change of f i b e r  lay-up angles 

on the  stress d i s t r ibu t ions .  For the  f l exura l  stresses, t h e  optimum 
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0 lay-up angle t o  be 41S0, showing a 34% lower stress l eve l  than t h e  445 

case. However, regarding t h e  inter laminar  shear  s t r e s s e s ,  f o r  t he  same 

impact conditions,  there  seems t o  be l i t t l e  difference i n  t h e  maximum 

s t r e s s  leve l  with lay-up angle desp i te  s ign i f i can t  changes i n  s t r e s s  

d i s t r i b u t i o n  i n  space with Pay-up angle. 

Another r e s u l t  of these  calculat ions i s  t h a t  t he  induced s t r e s s e s  

depend on t h e  impact c i r c l e  radius  t o  p l a t e  thickness r a t i o .  

O f  course, t o  evaluate  t h e  p o s s i b i l i t y  of f r ac tu re  o r  f a i l u r e  

of t he  composite under impact, the  complete s t r e s s  matrix a t  a point  

must be known, as well as the  f a i l u r e  c r i t e r i a  f o r  t h e  mater ia l .  
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CAPTIONS FOR F I G U R E S  

3 

4 

5 

6 

Geometry of  a two dimensional wave i n  a mult i -ply p l a t e  

Velocity sur faces  versus wave d i r ec t ion  f o r  var ious 

p l y  lay-up angles;  55% graphi te  fiber/epoxy ma t r ix  

(Moon, 1972) 

Direct ion of  p a r t i c l e  motion versus wave normal f o r  

var ious p l y  lay-up angles;  55% graphi te  fiber/epoxy 

matr ix  (Moon, 19'72) 

Wave sur faces  f o r  mult i -ply p l a t e s ;  a)  

angle,  b )  215' f i b e r  lay-up angle (Moon, 1972) 

0' f i b e r  lay-up 

0 Wave sur faces  f o r  mult i -ply p l a t e s ;  a)  +30 f i b e r  lay-up 

angle ,  b) +4S0 lay-up angle (Moon, 1972) 

Flexural wave d ispers ion  r e l a t i o n s  i n  an an iso t ropic  p l a t e  

(Mindlin's theory);  55% graphi te  fiber/epoxy matrix mult i -  

p l y  p l a t e ,  +45 f i b e r  lay-up angle.  0 

Surface waves and edge waves i n  s o l i d s  

Dis tor t ion  o f  an i n i t i a l l y  shaped t rapezoida l  pulse  

due t o  wave d ispers ion  e .g .  longi tudina l  waves pro- 

pagating across  o r  down t h e  f i b e r s  of  a un id i r ec t iona l  

f i b e r  composite material 
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9 

10 

11 

1 2  

13 

14 

Distor t ion of an i n i t i a l l y  shaped pulse  due t o  wave 

dispers ion e .g , shear  wave propagating down the  f i b e r s  

of a unid i rec t iona l  f i b e r  composite material 

Approximate dispers ion r e l a t ions  f o r  longi tudinal  waves 

i n  boron fiber/aluminum matrix rods f o r  various or ien ta t ions  

of t h e  f i b e r s  t o  the  rod ax is  (Pot t inger ,  1970), mater ia l  

dispers ion not  included . 

Sketch o f  dispers ion r e l a t i o n  f o r  longi tudinal  o r  shear  waves 

propagating normal t o  the  layers  of a composite of a l t e r -  

nat ing i so t rop ic  layers ,  E q .  (26) . 

Comparison of exact dispers ion r e l a t i o n s  ( so l id  l i nes )  w i t h  

t he  microcontinuum theory of Sun e t  a l .  (1968) f o r  various 

shear  modulus ratios;  a) shear  waves propagating i n  t h e  

d i rec t ion  of t he  layer ing,  b) longi tudinal  waves propa- I 

gat ing i n  t h e  d i r ec t ion  of the  layer ing 

Shock wave speed versus p a r t i c l e  ve loc i ty  (Hugoniot curve) 

f o r  a mixture of AR 0 

(Munson and Schuler, 1970) 

p a r t i c l e s  i n  an epoxy matrix 
2 3  

Experimental speeds of  longi tudinal  waves i n  steel  fiber/epoxy 

matrix rods fo r  various volume f r ac t ions  of s teel ,  (Nevi11 

e t  a l . ,  1972) ; waves t r a v e l l i n g  along t h e  f i b e r s  
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15 

16 

17 

18 

19 

The e f f e c t  of f ab r i ca t ion  on shock wave spa11 damage 

i n  a boron fiber/aluminum matrix composite (Schuster 

and Reed, 1969); a) brazed composite, b )  d i f fus ion  

bonded composite 

Experimental dispers ion r e l a t i o n  f o r  longi tudinal  waves 

propagating down t h e  f i b e r s  ( h a y  e t  a l . ,  1968); a) graphi te  

f i b e r  (Thornel) re inforced carbon phenolic composite, 

b) boron f i b e r  re inforced carbon phenolic composite. 

Experimental dispers ion r e l a t ions  f o r  waves i n  boron f i b e r /  

epoxy matrix composite (Tauchert and Guzelsu, 1972) 

upper f igu re  - longi tudinal  waves normal t o  the  f i b e r s ;  

lower f igu re  - shear waves, x ax is  is along t h e  f i b e r s  
3 

Experimental dispers ion r e l a t i o n  f o r  longi tudinal  waves 

i n  a tungsten fiber/aluminum matrix composite (Sutherland 

and Lingle, 1972) lower curve shows second branch and a 

cutoff  frequency around 4 MHZ 

Ortho t ropic  phot oe 1 as t i c i  t y  experiment showing an anis0 t ropi  c 

extensional wave i n  a p l a t e  loaded with a lead azide charge 

i n  t h e  center  (Dally, e t  a l . ,  1971), compare with Figures 

4, 27. 
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20 

21 

22 

23 

24 

25 

26 

Dynamic s t r e s s - s t r a i n  curves f o r  steel  fiber/epoxy matrix 

composite under various s t r a i n  rates (Sierakowski e t  a l . ,  

1970a) tests were conducted using compressional waves along 

the  f i b e r s  

Impact damage i n  a graphi te  fiber/epoxy matrix p l a t e  

( . 2 5  e m ,  0 . 1  inches th i ck )  showing back face s p l i t t i n g  

f o r  0 . 6 4  cm (1/4 inches) diameter steel  b a l l s  a t  

115 m/sec i n i t i a l  ve loc i ty .  

+45 (Novak and Preston, 1972) 

Ply lay-up angles t45', O o ,  

0 

Wave sur faces  generated by a l i n e  impact on a an iso t ropic  

h a l f  space (Kraut, 1963) 

Contact times based on Hertzian model ca lcu la t ions  f o r  t he  

impact of  i c e  b a l l s  and g ran i t e  spheres on graphi te  f i b e r /  

epoxy matrix h a l f  space 

S t a t i c  experimental contact  force r e l a t i o n  f o r  a 3/8 inch 

diameter steel b a l l  on graphi te  fiber/epoxy matrix composite, 

normal t o  t h e  f i b e r  d i r ec t ion  

S ta t i c  experimental contact  force r e l a t i o n  f o r  a 1/4 inch 

diameter steel  b a l l  on boron fiber/aluminum matrix composite, 

normal t o  t h e  f i b e r  d i r ec t ion  

Geometry of impact with a p l a t e ,  showing t h e  effect of 

motion o f  t h e  s t r u c t u r e  
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27 

28 

29 

S t r e s s  contours f o r  t he  membrane stress 1 / 2 ( t  + t ) 

a f t e r  impact f o r  a 55% graphi te  fiber/epoxy matrix 

p l a t e .  Comparison of a)  O o ,  and b)  245 p ly  lay-up 

angle cases (Moon, 1972) 

1 1  33 

0 

Stress contours f o r  t he  lowest f l exura l  wave stress 

1 /2 ( t  

epoxy matrix composite p l a t e .  Comparison o f  a) t15 

and b) t 4 5  p ly  lay-up angle cases (Moon, 1972) 

+ t 3 3 )  af ter  impact f o r  a 55% graphi te  f i b e r /  
1 1  

0 

0 

Three dimensional p l o t  of  t h e  lowest f l exura l  wave, 

1 /2 ( t  + t ) , and a q u a r t e r  plane o f  t he  p l a t e  f o r  

a 55% graphi te  fiber/epoxy matrix composite p l a t e  with 

+45O p ly  lay-up angles ( f i b e r s  along diagonals) 

(Moon, 1972) 

11 33 
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